
 
 
 
Howey, R. and Long, D. and Fox, M. (2004) Validating plans with exogenous 
events. PlanSIG2004: Proceedings of the 23rd annual workshop of the UK 
Planning and Scheduling Special Interest Group. pp. 78-87. ISSN 1368-5708 
 
 
 
http://eprints.cdlr.strath.ac.uk/2654/
 
 
Strathprints is designed to allow users to access the research 
output of the University of Strathclyde. Copyright © and Moral 
Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download 
and/or print one copy of any article(s) in Strathprints to facilitate 
their private study or for non-commercial research. You may not 
engage in further distribution of the material or use it for any 
profitmaking activities or any commercial gain. You may freely 
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints 
website. 
 
Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 
 

http://eprints.cdlr.strath.ac.uk/2815/


Validating Plans with Exogenous Events

Richard Howey, Derek Long and Maria Fox
Department of Computer and Information Systems, University of Strathclyde, Glasgow, UK

firstname.lastname@cis.strath.ac.uk

Abstract

We are concerned with the problem of deciding the valid-
ity of a complex plan involving interacting continuous activ-
ity. In these situations there is a need to model and reason
about the continuous processes and events that arise as a con-
sequence of the behaviour of the physical world in which the
plan is expected to execute. In this paper we describe how
events, which occur as the outcome of uncontrolled physical
processes, can be taken into account in determining whether
a plan is valid with respect to the domain model. We do not
consider plan generation issues in this paper but focus instead
on issues in domain modelling and plan validation.

1 Introduction
In any real world situation things happen as a result of
changes in the physical world that are not the direct conse-
quences of deliberate action. For example, water eventually
reaches boiling point when heated, a ball hits the ground
when dropped, a match burns a short time after being lit,
and so on. These physical changes happen instantaneously
following a period in which a continuous process (heating,
falling, burning, etc) has been at work. Although these pro-
cesses are often initiated by deliberate action, the changes
that follow are the indirect consequences of these actions.
These changes can be calledeventsto distinguish them from
the deliberate activities of agents.

The reason for modelling events in a planning domain de-
scription is to enable a planning system to plan around them
in finding a solution to a complex problem in which there are
constraints on continuously changing values. For example,
if a temperature must never rise above a certain level, but a
component might overheat after a period of time if certain
conditions are allowed to hold, then the planner must plan to
avoid the overheating event by taking action to undermine
these conditions. We discuss the motivations for modelling
and reasoning about events in section 2.

In this paper we consider both the modelling of events
and the validation of plans in which events have been either
exploited or avoided. Our plan validatorVAL has been ex-
tended to determine the validity of a plan in the presence of
events. The planning languagePDDL has been extended to
PDDL+ [4] to express both events and the processes that lead
to them. We summarise the key extensions in section 3. The
semantics of events inPDDL+ are discussed in section 4. In

section 5 we address the computational problem of ground-
ing events and propose a solution. In section 6 we discuss
the semantic ambiguities that may arise in certain modelling
circumstances and the problems of implementing plan val-
idation for PDDL+. This is followed by a summary of how
these problems are handled in the implementation ofVAL .
Some example plans in which events are triggered during
plan execution are presented in section 7.

2 Motivation
In many potential application domains for planning there are
complications that cannot be captured in classical planning
domain descriptions. Various extensions of classical plan-
ning have been proposed and explored, such as planning un-
der uncertainty and planning with partial observability, with
the intention of moving planning towards more realistic ap-
plication domains. In the real-time control systems commu-
nity there is a focus on controlling systems that are driven
by physical processes as well as controller actions. Systems
of this kind offer a major challenge to the planning commu-
nity, being a huge opportunity for the application of delib-
erative and planned control, while at the same time extend-
ing beyond the expressive capabilities of classical planning
languages. The extensions that are most important for repre-
senting such systems are the expression of continuous pro-
cesses and the expression of system responses to situations.
A system response is a state change that is triggered not by
an action on the part of the executive, but by a mechanisms
inherent to the physical system.

For example, if a ball is dropped onto a floor then at the
point of impact with the floor the ball will change its ve-
locity. The change is not brought about directly by the ex-
ecutive, as would be the case where the executive throws
the ball, but by a mechanism within the physical environ-
ment (the bouncing of the ball of the floor). As can be seen
in this example, the event is a consequence of an interac-
tion between a process (the falling of the ball) and its en-
vironment (the position of the ball relative to the floor). In
many real-time control problems there are situations similar
to this. The reason that it is important to model this in a
planning domain is that, if a planner is to attempt to control
a system like this, it is necessary for the planner to be able
to predict and plan around events that are triggered by the
actions (or inactions) that are planned for the executive.



In PDDL2.1 we already have the expressive power to rep-
resent events that occur simply as a consequence of the pas-
sage of time (so, events such as sunrise and sunset) [3], but
events that are triggered by activities that are initiated by the
executive cannot be modelled without extension of the lan-
guage.

In earlier work we have already examined how some
forms of continuous change can be modelled and the prob-
lems it creates for plan validation. Events represent another
step in the progress towards modelling and planning with
models of rich physical systems.

As examples of events that more strongly motivate the
need to be able to model event-behaviours in planning do-
mains, consider the following:

• In the management of a chemical process plant, the event
of a reaction being initiated when a heating vessel arrives
at a certain temperature, requiring valves to be opened to
release pressure or to draw off reactant.

• In the control of an orbiting observation satellite, the event
of the heaters being triggered to protect sensitive parts of
the satellite that are in shadow because of the orientation
of the satellite, requiring planned activities to work within
constrained energy supply levels.

• In a logistics-type domain, the event of a driver having
reached maximum safe driving hours under European law
and having to take a break, requiring planned activity to
either work with the necessary delay in transit or else to
have provided for a relief driver to be available at an ap-
propriate driver-exchange site.

3 PDDL and Continuous Effects
The series of International Planning Competitions was intro-
duced to facilitate comparison of different planning systems.
A central aspect of these competitions has been the adop-
tion of a common language to represent planning problems.
The languagePDDL has since become the most widely used
planning language, supporting comparison between plan-
ning systems and promoting the combination of different
planning techniques.PDDL has been extended, in particular
by Fox and Long for the 3rd competition [8] who introduced
time and numeric resources.

An important part of understanding the semantics of
PDDL has been the implementation of an automatic plan val-
idator,VAL . As PDDL incorporates more features and is able
to model real world problems more accurately the role of
an automatic plan validator becomes more important. This
is for a number of reasons including: (i) to validate com-
plex plans, (ii) to understand the details of the semantics and
(iii) to provide insights into how to solve planning problems.
The implementation of continuous effects inVAL is the first
step towards planning with these effects, as well as towards
planning with events. As the motivating examples in sec-
tion 2 illustrate, events are typically triggered by the effects
of continuous change. Indeed, where events are triggered
onlyby the effects of discrete change then they must always
coincide with the end points of durative actions, and could
therefore be possibly rolled into the action effects as addi-
tional (possibly conditional) effects.

Continuous Effects Continuous effects were added to
PDDL for accurately modelling change in real world situa-
tions. A continuous effect may only change a metric variable
called aPrimitive Numerical Expression (PNE). A durative
action that has a continuous effect on a PNE changes it so
that the values taken are described by a continuous function
of time. We have developed formal semantics for the inclu-
sion of continuous effects inPDDL, calledPDDL2.1 level 4.
The semantics can be described by continuous activity on a
real time line punctuated with discrete activity; for details
see [6, 7].

Continuous effects are defined by the rates of change of
PNEs in the domain model, these rates of change may refer
to other PNEs that are themselves changing continuously.
Thus the continuous effects are defined by a system of differ-
ential equations. Durative actions may have invariant condi-
tions requiring that a PNE must be above (or below) a cer-
tain threshold, for examplef > k on(0, T ). If f is changing
continuously we need to consider the roots off−k on(0, T )
in order to confirm that invariants such as this are satisfied.
For details on differential equations and rooting finding tech-
niques in the context of plan validation see [6]

4 Semantics of Exogenous Events
Events were introduced intoPDDL by Fox and Long with
the definition ofPDDL+ [4], a powerful extension ofPDDL
intended to model a wide range of interesting real world
scenarios. The language includes the ability to define back-
ground processes of the world and exogenous events into the
planning process. For example, a bath might overflow if too
much water flows into it, representing an event triggered by
the process of filling. InPDDL+ we could encode this event
by:

(:event flood

:parameters (?b - bath)

:precondition (and (>= (volume ?b) (capacity ?b))

(> (flow ?b) 0))

:effect (and (wet_floor ?b)

(assign (flow ?b) 0)))

Fox and Long in [4] defined the formal semantics of
PDDL+ in terms of hybrid automata [5], which is attractive as
it is a widely accepted model of mixed discrete-continuous
activity. However, certain details, in the semantics of events
and, particularly, in the implementation of events, leave
unanswered questions. This paper will not attempt to de-
fine a formal semantics, but will explain when events are
triggered and also discuss several of the complexities that
arise in implementing machinery for handling events. The
(informal) semantics presented relate to the implementation
of the validation of events inVAL .

4.1 Events Triggered by Discrete Change
An event istriggered in a plan when its preconditionbe-
comestrue. That is, when the state of the world progresses
from a state that does not satisfy the event precondition to a
state that does satisfy the precondition. Firstly, let us con-
sider events that are triggered bydiscretechange. After the
execution of an action (or a number of actions) all events that



Time

Event Happening 1

Event Happening 2

Action Happening

Figure 1: Event happenings

have their preconditions satisfied are executed together asan
event happening(see figure 1). These events might trigger
another event happening and so on. The event happenings
are equivalent to action happenings as defined in [2], and
are therefore subject to the same execution constraints. In
particularmutexconditions, which state that for any pair of
actions (events in this case) their preconditions and effects
must not interfere with one another, otherwise the plan that
contains them is invalid. Note that events in different hap-
penings are not subject to these execution constraints.

Two important considerations must be taken into account,
here. Firstly, we adopt the view that events are causally
linked to the actions (or events) that trigger them, so that
they succeed their triggering actions (events). This means
that we do not consider events in one happening to be mu-
tex with actions that triggered them even though they might
occur at the same time point. This leads us to the second
consideration: inPDDL2.1 considerable effort was made to
enforce a view that actions that are mutex should be executed
in succession, with their times of execution being separated
by a minimal (context dependent) separation,ε, representing
the minimum response time of the executive responsible for
execution of the plan. This separation cannot be justified for
events: events are a response triggered in the world, not the
actions of an executive (although, in some domains events
might represent the response of an executive that is not un-
der the direct influence of the planner — we will ignore that
possibility in this discussion). Thus, events are caused by
state transitions, occurring after the triggering conditions are
achieved and as a direct consequence of them, but there is
no reason for there to be a delay between the cause and its
effect. Therefore, events have to occur at the same time as
their causes trigger them. A consequence of this is that event
happenings can occur at the same instant as the action hap-
penings that trigger them, but are, nevertheless, considered
to occur after the actions that caused them. We arrive at the
notion of multiple happenings at a single time point that are,
nevertheless, sequenced. This idea appears to be exactly the
semantics proposed by Bacchus and Kabanza for actions in
TLPlan [1] and, by McDermott, for OPTOP [9]. The key
difference here is that we only allow event happenings to
stack at the same instant, never actions.

4.2 Triggering and Untriggering Events
An important observation of when events should be trig-
gered is that they are only triggered when event precondi-
tions becometrue. This naturally leads to the question of
when is an event triggered again once it has already been
triggered? It cannot be triggered at every point when the

precondition is satisfied, otherwise the event would be trig-
gered constantly on a subset of the real time line which is
non-sensical. However it is sensible to trigger an event more
than once; in order to achieve this we say:

• An event cannot be triggered again until its precondition
has not been satisfied at an intermediate time since it was
last triggered.

The fact that the time at which the precondition is not sat-
isfied is an intermediate time point is important as this im-
plies that an event may not be triggered twice at the same
time point within different event happenings. Since the num-
ber of possible events in a given domain is finite (there is
only a finite number of objects that can be used as parame-
ter values to distinguish events), this constraint impliesthat
only a finite number of possible events can occur at any time.
We say that an event isuntriggeredwhen its precondition
first becomes false after previously being satisfied when the
event was triggered. Checking when events are untriggered
is as important as checking when events are triggered, since
this determines when the event may be triggered again.

Another consequence of an event only being triggered
when its precondition becomes true is that no events are trig-
gered in the initial state. If an event precondition is satisfied
in the initial state then the event cannot be triggered untilits
precondition is firstly not satisfied.

In general, we would expect an event to delete one or
more of its own preconditions, preventing the event from re-
curring without further actions or events to re-establish the
conditions for the event to occur.

4.3 Events Triggered by Continuous Change
Events are most interesting when they are triggered by con-
tinuous change, as in the bath example where the volume of
water in the bath becomes too great and the bath overflows.
With the ability to model both continuous change and events
it is possible to accurately model interesting real world sit-
uations that are otherwise impossible to express. For exam-
ple, a simple thermostat which operates a heater to regulate
temperature. When the temperature is too cold the heater is
switched on and the temperature rises, when it is too hot the
heater switches off and the temperature begins to drop, and
so on.

The extension of the semantics of continuous effects in
PDDL to continuous effects with events can be seen as an
extension of thesemi-simple planas described in [7]. A plan
with continuous effects can potentially trigger an event at
any point during execution. Consider the following example
of triggering events between two actions as in figure 2:

1. Between the two actions we check for any events that may
be triggered, see figure 2 part 1.

2. The event with the earliest time to be triggered is consid-
ered, event 1, see figure 2 part 2.

3. Before the execution of event 1 we manage the continu-
ous activity on the interval from action 1 to event 1. We
check any invariant conditions, then update the value of
any continuously changing PNEs so they are correct for
the application of the effects of event 1.



Continuous Update

Invariant Check
Event Checker

Event 2

Continuous UpdateContinuous Update

Action 2

Continuous Update

Invariant Check
Event Checker

Continuous Update

Invariant Check

Event Checker

Time

Time

Continuous Update

Invariant Check

Time

Action 2

Invariant CheckInvariant Check

Event 1

Event 1

Action 2Action 1

Action 1

Action 1

3)

2)

1)

Figure 2: Events triggered by continuous effects

4. Event 1 is executed.

5. Next we must check the interval from event 1 until action
2 for events that may be triggered.

6. Consider the event with the earliest time to be triggered,
event 2, see figure 2 part 3.

7. Again we manage the continuous change by checking any
invariant conditions on the interval from event 1 to event
2. The continuously changing PNEs are then updated.

8. Event 2 is executed.

9. As before we must check the interval from the last event,
event 2, to action 2 for events that may be triggered.

10. If there are no events to be triggered on the interval from
event 2 to action 2 then we return to considering action 2.

11. All invariant conditions on the interval from event 2 until
action 2 are checked. The continuously changing PNEs
are updated and then action 2 is executed.

This example demonstrates the basic semantics of events
within a plan with continuous effects. To extend this to the
general case there are several points to take into account:

1. Happenings consisting of sets of actions or events are ex-
ecuted rather than single actions and events.

2. The time at which an event is executed may be identical
to the last action or event. Then no invariant conditions
are checked or continuously changing PNEs updated.

3. The event checking is on an interval that is closed on the
left and open on the right. This is consistent with the se-
mantics of mixed discrete-continuous plans inPDDL.

4. We always need to check for events on the interval from
an event to the next action even if this interval has already
been considered. This event may have changed the state
of the world, in particular the continuous effects.

5. We always check to untrigger events when checking to
trigger events. Events are untriggered at arbitrary time
points within a plan affecting which events may be trig-
gered after these time points.

Despite the simple basic semantics of events withinPDDL
there are still a number problems that can arise. These prob-
lems are discussed in section 6.

5 The Grounding Events Problem
When validating a plan with events usingVAL there are var-
ious problems that arise, in particular the computation prob-
lem of handling the vast number of ground events. Events
are defined inPDDL using similar syntax to that of an action,
for example:

(:event blow-up

:parameters (?kitchen ?match)

:precondition (and (gas-leak ?kitchen)

(in ?match ?kitchen)

(lit ?match))

:effect (and (explosion) (not-happy)))

Events are never explicitly part of a plan, so there is no
event such as(blow-up my-kitchen match-113) listed
in any plan, even though the plan might contain actions that
will bring about the preconditions (say, turning on the gas in
my-kitchen and strikingmatch-113). An event is trig-
gered whenever its precondition becomes true within the
plan. In the domain definition an event is notground: that
is, the parameters are not instantiated. So, when the plan is
executed we need to consider every ground instance of each
event. If there are 5 kitchens and 362 matches then that is
5 × 362 = 1810 events to check at every point of execution
of the plan! Or perhaps consider an event with four param-
eters, each of which could have 25 different values, that is
254 = 390625 events! Clearly the number of ground events
grows exponentially with the number of parameters that an



event has and polynomially with the number of objects. Al-
though there are reasonable bounds to the number of param-
eters and objects there can still be a huge number of ground
events. Therefore checking each event precondition may be
problematic in terms of computation of time, thus we wish
to check the event preconditions as efficiently as possible.

5.1 Reduction of the Grounding Events Problem
The first observation to be made when checking event pre-
conditions is that events can only be triggered when some-
thing in the world is changed. Therefore one of the parame-
ters must be an object in the world that has just changed and,
moreover, the property of the object that has changed must
occur in the event precondition. For example consider the
event(blow-up ?kitchen ?match), and at some point
in a plan the action(light-match match-94) is exe-
cuted. Then we only need to check the precondition of
(blow-up ?kitchen match-94) for every kitchen in the
domain. Using this as a starting point we can reduce the
number of event preconditions to check.

The second observation to be made is that the change of
literals and PNEs can occur in two ways: i) Discretely when
non-durative actions are executed. ii) Continuously between
discrete happenings when PNEs are defined by a system of
differential equations. Therefore event preconditions need
to be checked after happenings if they are affected by the
changed literals or PNEs. Also, we can check event pre-
conditions that depend on continuously changing PNEs be-
tween discrete activity. This requires more consideration,
but only requires an extension of the techniques used for
discrete change, which is discussed later.

Map into a set of parameter lists The grounding events
problem can be managed through a map which is used to (ef-
ficiently) calculate which events are triggered at a particular
point in a plan. The map is from an unground event, a state
and a set of literals and PNEs that have changed since the
last state to a set ofparameter lists. The resulting ground
events are only triggered subject to further checks that are
discussed in section 4.2.
Definition 5.1 Parameter list A parameter list is an or-
dered list of object names for a given unground event written
(p1, p2, · · · , pn), where eachpi is an object name with the
correct type corresponding to the unground event, or an un-
defined parameter denoted by⊥.

A given parameter list and unground event represents a
ground event. Using the undefined parameter,⊥, we are
able to express a set of parameters where⊥ could be any
object. The use of⊥ is appropriate when a parameter does
not affect the truth value of a proposition.

Definition 5.2 Let φ be the map from an unground event,
E, an unground proposition,P , a state,S, a set of changed
literals andPNEs, L, to a set of parameter lists,K, where
K is the complete set of parameter lists defining all of the
ground events that could be triggered, written:

φ(E,P, S, L) = K.

The proposition,P , is included so thatφ may be applied to
sub-formulae of the precondition of the unground event,E.

5.2 Addressing the Grounding Events Problem
Let E be an unground event,P an unground precondi-
tion, S a state,L a set of literals and PNEs then we define
φ(E,P, S, L) as follows depending on the structure ofP :

Literal If P is a literal then for each literal inL with truth
value true and the same name asP we add a parameter list
toK. For one such literal,Li in L, we match the parameters
with those ofP and then construct a parameter list by instan-
tiating the corresponding parameters in the event parameter
list. For example: ifE is (blow-up ?kitchen ?match),
P is (lit ?match) andLi is (lit match-34) then the
parameter list is(⊥,match-34).

Disjunction If P is a disjunction, ∨iXi, then
φ(E,∨iXi, S, L) := ∪iφ(E,Xi, S, L). That is, the
set of parameter lists given by each disjunct.

Conjunction If P is a conjunction,∧iXi, then it is not as
simple as the disjunctive case since all the conjuncts must be
satisfied for each parameter list. The set of parameter lists,
K, is constructed as follows:
1. For each conjunct,Xa, calculate the set of parameter lists
Ja = φ(E,Xa, S, L).

2. Each parameter list inJa satisfying∧i6=aXi is added to
K.

The last point implies that every undefined parameter must
be defined if it has an impact on the truth value of∧i6=aXi.
Thus we need to use the map,ψ, as defined in section 5.3 (in
point 2. we calculateψ(E,∧i6=aXi, S, Ja)). Note that the
setK is pair-wise unique.

Implication If P is an implication, X → Y , then
φ(E,X → Y, S, L) := φ(E,¬X ∨ Y, S, L).

Negation If P is a negation,P = ¬Q, thenφ is defined as
below ifQ is a literal, comparison, conjunction, disjunction,
implication and negation respectively.

φ(E,¬Q,S,L) :=the set of parameter lists given by

each literal inL with truth value false

and the same name asQ.

φ(E,¬Q,S,L) :=as for comparisons without negation

except we check that the comparison

is not satisfied instead of satisfied.

φ(E,¬(∧i Xi), S, L) :=φ(E,∨i ¬Xi, S, L)

φ(E,¬(∨i Xi), S, L) :=φ(E,∧i ¬Xi, S, L)

φ(E,¬(X → Y ), S, L) :=φ(E,X ∧ ¬Y, S, L)

φ(E,¬¬Q′

, S, L) :=φ(E,Q′

, S, L)

Comparison If P is a comparison thenφ returns the list
of parameters that satisfy the comparison, where at least one
of the parameters is derived from a PNE inL. This implies
that we must test the comparison for every set of parameters,
where at least one is derived from a PNE inL. For example
consider the comparison

a5
− 2b4 + 3c3 − 2d2 + e > 0



Figure 3: A surface

wherea, b, c, d ande are PNEs which are given by separate
parameters for the event,E. If only one PNE in the com-
parison can correspond to a PNE inL, saya, this still leaves
four undefined parameters. Supposing each PNE in the com-
parison can be given by ten different parameters, then this is
104 = 10000 comparisons that must be checked!

In general it can be very complex to calculate which com-
binations of PNEs satisfy the given inequality. For example,
consider an inequality,f(a, b) > 0, with just two PNEs for
some functionf of a andb. The functionf may be arbi-
trarily complex, see figure 3, so calculating the values ofa
andb that satisfy the inequality is far from trivial. There-
fore the best way to find which values ofa and b satisfy
the inequality, from our limited set of values, is to test each
combination.

5.3 Grounding Events Problem and Conjunction
In order to calculate the set of parameter lists that satisfyan
unground proposition with conjunction using the mapφ it is
necessary to define the following map:

Definition 5.3 Let ψ be a map from an event,E, an un-
ground proposition,P , a stateS, a set of parameter lists,
K1, to a set of parameter lists,K2. WhereK2 is the set
of parameter lists forE given byK1 that satisfyP in S,
written:

ψ(E,P, S,K1) = K2.

Let E be an event,P an unground proposition,S a state,
K1 a set of parameter lists then we defineψ(E,P, S,K1) as
follows depending on the structure ofP :

Literal If P is a literal thenK2 is the set of parameter
lists derived fromK1 such thatP has truth value true. IfP
has undefined parameters then this requires systematically
testing the truth value ofP for every instantiation of the un-
defined parameters inK1 which correspond to those inP .

Disjunction If P is a disjunction, ∨iXi, then
ψ(E,∨iXi, S,K1) = ∪iψ(E,Xi, S,K1). That is, the
set of parameter lists given by each disjunct.

Conjunction If P is a conjunction,∧iXi, thenK2 is the
set of parameter lists derived fromK1 such thatP has truth
value true. This is calculated by systematically testingP
against every set of parameters derived fromK1.

Implication If P is an implication,X → Y , then
ψ(E,X → Y, S,K1) := ψ(E,¬X ∨ Y, S,K1).

Negation If P is a negation writtenP = ¬Q thenψ is
defined as below ifQ is a literal, comparison, conjunction,
disjunction, implication and negation respectively.

ψ(E,¬Q,S,K1) :=the set of parameter lists given by

instantiatingK1 such thatQ is false.

ψ(E,¬Q,S,K1) :=as for comparisons without negation

except we check that the comparison

is not satisfied instead of satisfied.

ψ(E,¬(∧i Xi), S,K1) :=ψ(E,∨i ¬Xi, S,K1)

ψ(E,¬(∨i Xi), S,K1) :=ψ(E,∧i ¬Xi, S,K1)

ψ(E,¬(X → Y ), S,K1) :=ψ(E,X ∧ ¬Y, S,K1)

ψ(E,¬¬Q′

, S,K1) :=ψ(E,Q′

, S,K1)

Comparison The set of parameters,K2, is calculated in a
the same way asφ for comparisons except the parameter list
starting point isK1 and notL.

5.4 Events Triggered by Continuous Effects
Events triggered on an interval between two happenings,
I = [a, b), by continuous activity are calculated as follows:

1. The mapφ is applied to each unground event precondition
whereL consists of the PNEs that are changing continu-
ously, yielding a set of ground events,E. We assume that
any comparisons with continuously changing PNEs are
satisfied at this point (or not satisfied if appropriate).

2. Next we calculate the subset of intervals ofI that each
ground event precondition is satisfied on. From this we
obtain an event happening at timet, Et, which contains
the set of events that have the earliest satisfied precondi-
tion (we also check that these events have not been trig-
gered already).

3. LetUr be the set of events fromE such that: (i) each event
was triggered beforeI, and (ii) each event precondition is
not satisfied at the minimum time inI, r, for any event
precondition to be not satisfied from the events in (i).

4. If Et is defined andUr is not then we execute the event
happeningEt as described in section 4.3 accounting for
continuous change. Then[t, b) is the next interval to be
considered for triggering events by continuous activity.

5. If Ur is defined andEt is not then we untrigger the events
in Ur at timer. Then[r, b) is the next interval to be con-
sidered for triggering events by continuous activity, since
untriggering events may allow these events to be triggered
on the remaining interval.

6. If bothEt andUr are defined then ift ≤ r then we exe-
cute the happeningEt and[t, b) is the next interval to be
considered. Otherwise we untrigger the events inUr at
timer and[r, b) is the next interval to be considered.

After an event happening has been executed we check for
events triggered by discrete change before considering the
next interval for events that may be triggered by continuous
change. When there are no more events to trigger or untrig-
ger onI it is no longer considered.



5.5 Grounding Events Conclusion
Although, in the general case, checking every ground event
can be a very expensive task this need not be the case if
the domain and problem are written carefully. In order that
events can be quickly processed inVAL the following advice
should be followed.

• Each unground event should be defined so that when its
precondition may be satisfied due to a PNE or a literal
that has changed the resulting number of events that can
be ground from the partially ground event is small. Ideally
this number should be one.

For example in section 4 aflood event may have its
precondition satisfied due to three PNEs changing. If any
one of these PNEs are considered then theflood event is
completely ground, that is the bath in question is named,
so there is only one ground event precondition to check. If
we consider theblow-up event from the beginning of sec-
tion 5 and suppose that a match has been lit then we only
need to check the same number of ground events as there
are kitchens. However, if a kitchen develops a gas leak then
we need to check the same number of ground events as there
are matches! This could be a large number, but perhaps still
acceptable. The more undefined parameters there are after
taking into account a changed PNE or literal the worst the
situation is, depending on the number of objects.

6 Problems with Events
6.1 Problems with Semantics
Timing of Events Suppose two events are triggered at
times close to one another, the first event,e1 at timet1 and
the second evente2 at time t2. If the events are such that
t2 − t1 < 0.01, where0.01 is the given tolerance for plan
validation then are the events considered to be executed at
the same time? If the events are considered to be executed
at the same time then the mutex conditions between the two
events needs to be checked. The issue of whether events are
mutex or not, in relation to the tolerance value of plan valida-
tion, is very much similar to that of actions and tolerance as
discussed in [2]. There are some extra considerations when
considering events (see also the discussion concluding sec-
tion 4.1):
• The timing of events could be considered as precise, since

events are triggered when conditions are met in the world
state and are not dependent on any executive, so there are
no timing inaccuracies. However, the accuracy to which
numbers can be represented prevents this from being to-
tally workable, although attractive otherwise. Calculating
the exact times at which events are triggered also causes
problems for this option.

• A plan is modelled as being totally deterministic in its ex-
ecution, even when events have been considered. When
two mutex events occur in different happenings they are
considered not to interfere, even if the happenings occur at
the same instant. This is not entirely intuitive and raises
significant questions about the way in which the tempo-
ral flow associated with causal chains is abstracted in the
management of events.

-

6Value

0
0

12.5

-12.5

Figure 4: Graph of a converging PNE.

Infinite Sequence of Events in Finite Time It is possi-
ble for events to cascade, occurring at successively closer
instants, so that there is an infinite number of events in a
finite time. For example, a bouncing ball could be mod-
elled so that each time it hits the ground an event is trig-
gered that gives it an upward velocity equal to some fraction
of its downward velocity on impact, leading to a sequence
of smaller and smaller bounces, taking less and less time to
complete. For this to happen the times of the events must
converge to a certain limit. Let us call this timec. Let en

be a sequence of events triggered at corresponding timestn
which converge to timec. Let Sn be the state of the world
after the application of eventen. If we firstly assume that the
time at which the events occur can be measured accurately
and that an infinite amount of events can be processed then
there are a number of outcomes to this situation:

1. The state sequence,Sn, converges to a particular state.
Let the value of a particular PNE befn for each stateSn,
thenfn will converge to a certain limit, for example see
figure 4. The sequencefn may be constant after a certain
value ofn or it may continually be approaching the limit.
The logical state of the world must also converge, and
since there are a finite number of predicates this implies
that the logical state must eventually become constant. In
this case the outcome of the sequence of events is deter-
ministic.

2. The state sequence,Sn, does not converge to a particular
state. In this caseSn may be such that the logical states
in the sequence do not converge. Thus after timec the
truth value of some predicates is unknown meaning that
the outcome of the sequence of the events is indetermin-
istic. The numerical state may also contain PNEs where
the value is unknown after timec. To ensure that the plan
is still deterministic after timec any undefined PNEs or
predicates must be redefined before they are accessed. If
any undefined PNE or predicate is accessed before the end
of the plan then it is no longer deterministic.

Timing is a problem for the above sequence of events,
since the events are triggered arbitrarily close together.

From an implementation point of view the occurrence of
an infinite number of events within a finite time causes many
problems. No matter how accurately we measure the time at
which events are triggered the times will soon be too close



-

6Value

0
0

10

Figure 5: Graph of a diverging PNE.

to represent with different numbers. However, executing an
infinite number of events by considering them each in turn
is simply impossible. In a convergent case we could cal-
culate the state limit and apply the correct state at the time
of the sequence limit. Any consequences during the time at
which the sequence of events are triggered would need to be
taken into account. Unfortunately to account for such cases,
in general, is extremely problematic and unlikely to be of
practical value.

Evaluating the Goal The goal of a plan is normally
checked after the execution of the last action, but when
events are present in the domain this may not be appropri-
ate. If an event is triggered after the last action then the goal
condition may not be satisfied. Therefore it might be more
appropriate to check the goal after the last event is triggered.
On the other hand, an alternative perspective is to argue that
if an event undermining the goals is sufficiently far away
from the end of the plan, then the plan can be said to have
usefully achieved its goals. In domain models in which all
continuous change is encapsulated within durative actions,
and therefore within the lifetime of a plan, there is no possi-
bility of events being triggered after the last timed literal has
had its effects. Therefore, it is possible to identify a point of
stability for every plan in such domain models.

6.2 Problems with Implementation
Roots of Functions Events triggered by continuous ef-
fects are triggered by a continuous function of time crossing
some threshold. Consequently the times of such events are
calculated from the roots of continuous functions (the values
where the function is zero). The value of the roots are always
calculated to within a certain accuracy. Thus the timing of
the event is always to within a certain accuracy. This point is
particularly important when two events (or one event and an
action) are very close together. The ordering of the events
may have a different outcome, so it should be considered if
the two events are mutex or not.

When events are triggered or untriggered The time at
which events are triggered can have a significant impact on
the execution of a plan, since the ordering of events and ac-
tions may cause different events to be triggered in the sub-
sequent plan. However, equally important is whether events
are triggered or untriggered at all. Consider a curve with

non-negative values that only touches the axis at a point, and
an event is triggered if the curve is non-positive. Now, in this
case the event would be triggered, but if the curve had to be
strictly negative to trigger the event then the event would not
be triggered. Therefore we must carefully consider where
the cut off point for triggering an event is, and no matter
where it is drawn there could be accuracy issues to whether
or not it is triggered. If a planning problem contains events
triggered by changes in PNEs thenthe inaccuracies of PNEs
may affect the accuracy of the logical state of the world.

The same considerations apply when determining
whether to untrigger an event as this has a serious impact
on the outcome of a plan. In fact when to untrigger an event
can be even more problematic. If an event,e, has been trig-
gered due to a continuous change in a PNE,f , and no more
events are triggered at this time we must check for events
that are untriggered after this time sincee has changed the
state of the world. Now when evaluating the event precondi-
tion of e to check if the event should be untriggered (which
may be the case ife changed the value off ) we may find
that the precondition is not satisfied implying thate should
be untriggered. This could be due to inaccuracy in testing
the event precondition. The problem is that the event pre-
condition is (usually) on the cusp of being satisfied so the
slightest inaccuracy could result in an incorrect answer.

Comparisons for event preconditions may use strict or
non-strict inequalities, but since the accuracy of roots and
the representation of numbers is limited this distinction is
meaningless for the time at which events are triggered.

6.3 Implementation in VAL

In the implementation ofVAL events are triggered at the
time calculated to the best degree of accuracy available. The
degree of accuracy necessarily includes the error of roots
of continuous functions and the representation of numbers.
Therefore two events can occur as close to one another as
possible subject to the representation of numbers, without
checking if the two events are mutex or not. However, if two
events are to be triggered at the same time then the mutex
conditions must be checked. Two events may be triggered at
the same time due to accuracy problems or even in the incor-
rect order which is unfortunately unavoidable. Well written
planning problems should aim to minimize problems created
by inaccuracies.

The interesting ‘infinite events in finite time’ example is
not explicitly handled inVAL as in the majority of cases
this would result in an indeterministic outcome. To sensi-
bly handle this scenario is not a worthwhile pursuit since
any real world model is unlikely to require this feature, cer-
tainly not initially as events are first considered in planning
problems. VAL will try to validate such a plan and fail in an
unpredictable manner or never terminate, such a sequence of
events should then be obvious to the user. In conclusion the
domain, problem and plans should be written to avoid such
sequences of events (which should be easy).

The goal of a plan is checked after the last event to be
triggered after the last action has been executed.



7 Examples
7.1 Emptying a Tank
Consider a tank which is full of some mystery liquid that we
wish to empty. In order to empty this particular tank we must
firstly open the valve to the tap on the tank which can only
stay open for a limited time of 150 time units. The tap can
be turned to increase and decrease the flow of the mystery
liquid within certain parameters. We wish to empty the tank
but the tank is not allowed to run dry in case it rusts, so we
must settle for reducing the volume to below a certain small
amount. Below is a domain encoding inPDDL:

(:durative-action open-tank

:parameters (?t)

:duration (= ?duration 150)

:condition (and )

:effect (and (decrease (volume ?t)

(* #t (volume-rate ?t)))))

(:durative-action increase-flow

:parameters (?t)

:duration (>= ?duration 0)

:condition (and (over all (<= (volume-rate ?t) 6.5)))

:effect (and (increase (volume-rate ?t)

(* #t (volume-rate-constant ?t)))))

(:durative-action decrease-flow

:parameters (?t)

:duration (>= ?duration 0)

:condition (and (over all (>= (volume-rate ?t) 0)))

:effect (and (decrease (volume-rate ?t)

(* #t (volume-rate-constant ?t)))))

(:event dry-tank

:parameters (?t)

:precondition (<= (volume ?t) 0)

:effect (and (assign (volume-rate ?t) 0) (dry ?t)

(assign (volume-rate-constant ?t) 0)))

If the volume of liquid becomes zero then the event of
the tank becoming dry is triggered, this event has the effect
of ensuring that the model of the volume of liquid in the
tank is correct. This allows the plan to continue if necessary.
Suppose we execute the following plan:

1: (open-tank tank) [150]

5: (increase-flow tank) [25]

86: (decrease-flow tank) [25]

-Time

6Value

0 151
0

500

Figure 6: Graph showing thedry-tank event triggered

-Time

6Value

0 151
0

500

Figure 7: Graph of(volume tank) and no events

Firstly we open the valve on the tank and then increase
the flow of liquid out of the tank. Recognizing that the tank
must not run dry we lastly reduce the flow of liquid to zero.
Unfortunately the flow of liquid was reduced too late and
thedry-tank event was triggered, see figure 6. However if
we execute the last action a bit sooner we can avert the tank
running dry and reduce the volume sufficiently, see figure 7.

7.2 Thermostat
With a small number of simple events it is possible to
model quite complex background behaviour of continuously
changing PNEs, for example consider the following exam-
ple of a thermostat:

(:durative-action change-temp

:parameters (?t)

:duration (>= ?duration 0)

:condition (and )

:effect (and (increase (temp ?t) (* #t (temp-rate ?t)))

(increase (temp-rate ?t) (* #t (temp-rate-rate ?t)))

(increase (integral-temp) (* #t (temp ?t)))))

(:event too-hot

:parameters (?t)

:precondition (> (temp ?t) 15)

:effect (and (assign (temp-rate-rate ?t) -2)))

(:event too-cold

:parameters (?t)

:precondition (< (temp ?t) 5)

:effect (and (assign (temp-rate-rate ?t) 1.5)))

-Time

6Value

0 101
0

774

Figure 8: Graph of(integral-temp).



-Time

6Value

0 101
0

37

-24

Figure 9: Graph of(temp unit).

-Time

6Value

0 101
0

10

-10 a

q

a

q

a

q

Figure 10: Graph of(temp-rate unit).

(:event too-much-temp-rate

:parameters (?t)

:precondition (>= (temp-rate ?t) 10)

:effect (and (assign (temp-rate ?t) 0)))

(:event too-little-temp-rate

:parameters (?t)

:precondition (<= (temp-rate ?t) -10)

:effect (and (assign (temp-rate ?t) 0)))

The plan ‘1: (change-temp unit) [100]’ exe-
cuted produces the continuous change in the PNEs as shown
in figures 8, 9 and 10, for certain initial values. The val-
ues taken by the PNEs seem to exhibit quite unpredictable
values, yet in fact, the values are deterministic.

8 Conclusion
The first step to developing planners that are able to handle
planning problems with events is to present an unambiguous
semantics. This paper has discussed the semantics ofPDDL
with events and any issues arising. An important part of the
presentation of the semantics is the implementation of the
semantics, this has been done in our plan validation tool,
VAL , see figures 4, 5, 6, 7, 8, 9 and 10 for example output.
VAL is a very important and useful tool for the development
of any planner that is to handle events, not only to validate
plans produced by the planner. The implementation within
VAL provides many insights and starting points for extending
planners to handle events, as well as the possibility of using
VAL directly in the planning process itself.

There are various problems with the semantics and imple-
mentation of validating plans using events, but many inter-
esting problems can be modelled by making certain restric-
tions. In particular to ensure fast validation of plans with
events the problem of grounding events must be taken into
account, this was the focus of section 5. Ideally a change
in the world state should lead directly to the events which
have to be triggered without considering many irrelevant
candidate events. Other considerations must be accounted
for, such as avoiding cascading events that create an infinite
number of events in finite time. The accuracy of PNEs must
also be taken into account when they are used. We are re-
viewing our semantics of events in order to decide whether
an alternative model would remove these problems. In par-
ticular, a model in which a (tiny) separation is imposed be-
tween the triggering of events and their enactment appears
plausible and promising.

The availability of the automatic plan validator,VAL , to
validate plans with events is one of the first steps in build-
ing planners than can handle events. The scope of the plan-
ning problems that can be captured using events is greatly
increased, supporting much more accurate models of real
world situations. The objective is to ultimately bring these
aspects together in order to have planners capable of plan-
ning with even richer domain representations than at present.

References
[1] F. Bacchus and F. Kabanza. Using temporal logic to ex-

press search control knowledge for planning.Artificial
Intelligence, 116(1-2):123–191, 2000.

[2] M. Fox and D. Long. PDDL2.1: An extension to PDDL
for expressing temporal planning domains.Journal of
AI Research, 20, 2003.

[3] M. Fox, D. Long, and K. Halsey. An investigation into
the expressive power of PDDL2.1. InProceedings of
ECAI’04, 2004.

[4] Maria Fox and Derek Long. PDDL+ : Plan-
ning with time and metric resources. Technical re-
port, University of Strathclyde, UK. Available at:
planning.cis.ac.uk/competition/, 2002.

[5] V. Gupta, T.A. Henziner, and R. Jagadeesan. Robust
timed automata. InHART’97: Hybrid and Real-time
Systems, LNCS 1201, 331–345. Springer-Verlag, 1997.

[6] R. Howey and D. Long. Validating plans with contin-
uous effects. InProc. of the 22nd Workshop of the UK
Planning and Scheduling SIG, 115–124, 2003.

[7] R. Howey, D. Long, and M. Fox.VAL : Automatic plan
validation, continuous effects and mixed initiative plan-
ning usingPDDL. In Proc. of 16th IEEE International
Conference on Tools with Artificial Intelligence, 2004.

[8] D. Long and M. Fox. The 3rd International Planning
Competition: Results and analysis.Journal of AI Re-
search, 20, 2003.

[9] D. McDermott. Reasoning about autonomous pro-
cesses in an estimated-regression planner. InProc. of
ICAPS’03, 2003.


