
Bahadoorsingh, S. and Rowland, S. M. and Catterson, V. M. and Rudd, S. E. and McArthur, S. D. J. 
(2010) The role of circumstance monitoring on the diagnostic interpretation of condition monitoring 
data. In: IEEE International Symposium on Electrical Insulation 2010 (IEEE ISEI), 6-9 June 2010, 
San Diego, USA. 

http://strathprints.strath.ac.uk/26477/  

Strathprints is designed to allow users to access the research output of the University of 
Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the 
individual authors and/or other copyright owners. You may not engage in further 
distribution of the material for any profitmaking activities or any commercial gain. You 
may freely distribute both the url (http://strathprints.strath.ac.uk) and the content of this 
paper for research or study, educational, or not-for-profit purposes without prior 
permission or charge. You may freely distribute the url (http://strathprints.strath.ac.uk) 
of the Strathprints website.  

Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 

http://strathprints.strath.ac.uk/26477/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk


The Role of Circumstance Monitoring on the 
Diagnostic Interpretation of  
Condition Monitoring Data 

 
S. Bahadoorsingh1, S. M. Rowland1, V. M. Catterson2, S. E. Rudd2 and S. D. J. McArthur2 

1The University of Manchester, 
School of Electronic and Electrical Engineering, 

PO Box 88, Manchester, M60 1QD, United Kingdom 
2University of Strathclyde 

Institute for Energy and Environment, 
Glasgow, G1 1XW, United Kingdom 

 
    Abstract - Circumstance monitoring, a recently coined termed 
defines the collection of data reflecting the real network working 
environment of in-service equipment. This ideally complete data 
set should reflect the elements of the electrical, mechanical, 
thermal, chemical and environmental stress factors present on 
the network. This must be distinguished from condition 
monitoring, which is the collection of data reflecting the status 
of in-service equipment. This contribution investigates the 
significance of considering circumstance monitoring on 
diagnostic interpretation of condition monitoring data. 
Electrical treeing partial discharge activity from various 
harmonic polluted waveforms have been recorded and subjected 
to a series of machine learning techniques. The outcome 
provides a platform for improved interpretation of the 
harmonic influenced partial discharge patterns. The main 
conclusion of this exercise suggests that any diagnostic 
interpretation is dependent on the immunity of condition 
monitoring measurements to the stress factors influencing the 
operational conditions. This enables the asset manager to have 
an improved holistic view of an asset’s health. 

 
I.    INTRODUCTION 

 

 Power systems are evolving. The strong thrust to meet 
increased energy production targets from renewable and 
distributed generation sources have seen alternative locations 
on the ageing power networks [1]. With the gradual rise in 
electricity demand and technological advancements heralding 
a steady increase in the number of controllable and efficient 
consumer power electronic devices, the load characteristics 
also change. The connection of these non-linear loads may 
lead to locations of high harmonic content and reduced power 
quality not experienced previously.  

In addition to these concerns, power network asset 
managers have other new issues including requirements to 
minimize energy loss, optimizing environmental 
performance, changing weather patterns and minimizing 
health and safety risks. In a deregulated competitive market, 
such considerations must be balanced for optimal returns to 
shareholders [2]. These mature networks boast a large 
proportion of the asset base approaching or exceeding the 
original design-life [1]. Thus, there is an urgent need for 
improved plant and network diagnostics.   

Circumstance monitoring was born from this evolution 
of the traditional power system. Dynamic electrical, 
mechanical, thermal, chemical and environmental stress 
factors influencing the working conditions of the insulation 
systems have led to questioning of the applicability of current 
life models and diagnostic assessments. As an example, 
harmonic influence on partial discharge (PD) activity [3] can 
lead to possible misinterpretation of the dominant ageing 
mechanism often derived from artificial intelligence 
techniques. However, such techniques are developed solely 
on a database of the unpolluted power frequency. If changes 
in partial discharge activity are a result of an unmonitored 
change in power quality (circumstance monitoring), 
overestimation of the insulation’s ageing state will occur 
resulting in inappropriate asset management decisions taken. 
The uppermost layer of the developed asset management 
framework [1] in Fig. 1 illustrates the two essential streams 
of data which an asset manager must critically assess to 
determine the state of the insulation (condition monitoring) 
before making decisions. 

Fig. 1. Crucial information for an assets manager acquired from 
circumstance and conditioning monitoring 

 
This contribution investigates the impact of harmonic 

influenced electrical treeing partial discharge activity 
subjected to a series of machine learning techniques. 
 

II.   METHODOLOGY 
 

Point-plane LY/HY5052 epoxy resin samples using 3 µm 
radius conditioned hypodermic needles and a 2 mm gap were 
employed. The capture of electrical treeing PD activity from 
a total of 11 samples containing electrical trees has been 
outlined in [4] using the experimental facility described in 



[5]. All samples were subjected to the seven composite 
waveforms, outlined in Table I at a constant peak voltage of 
either 10.8 or 14.4 kV peak. ϕ is defined as the phase 
difference between the harmonic frequencies and the 
fundamental (zero in all cases here). Ks is defined as a 
measure proportional to the rms derivative of the composite 
waveform [6, 7]. The total harmonic distortion (THD) index 
[8] is also provided.  

TABLE I 

PROPERTIES OF THE SEVEN TEST WAVEFORMS [4].  
 

Harmonic Composition + 50 Hz 
Waveform 

ID # Harmonic 
Order 

% Magnitude 
per Harmonic  ϕ  Ks 

THD 
% 

1 3 40.0 0 1.56 40.0 
7 1 100 0 1.00 0.00 
8 5 5.00 0 1.03 5.00 
9 7 5.00 0 1.06 5.00 

11 7 17.8 0 1.60 17.8 
12 5,7,11,13,23,25 3.20 0 1.60 7.85 
13 5,7,11,13,23,25 2.00 0 1.27 5.00 

 
 These harmonic polluted waveforms defined in Table I can 
be characterized by a number of attributes, including 
harmonic sets, presence of particular components and THD. 
If a machine learning-based classifier can be trained to 
correctly identify these attributes from PD pattern features, it 
supports the argument that changes to the pattern are caused 
by particular effects traceable to the waveform distortion. 
 This research aimed to train accurate classifiers for 
identifying certain waveform attributes. The accuracy of each 
classifier can be used to draw conclusions about the effects of 
particular attributes, such as the relative importance of 
particular harmonic orders. This section describes the process 
of classifier selection and training. 

A.    Feature Selection 
 The acquisition hardware [5] records phase position and 
apparent charge of each PD, grouped into bursts of activity. 
Each burst may contain a varied number of discharges 
captured in the cyclical acquisition window of 80 ms. This 
raw data must be pre-processed into a regularized form 
known as a feature vector for use by a classifier. Moving 
from the raw data to a set of pattern features reduces the size 
of the dataset and the computational complexity of training a 
classifier. More importantly, it helps avoid the "curse of 
dimensionality" [9], where the performance of a machine 
learning technique tends to degrade as the number of features 
increases. For this reason, the features chosen for the feature 
vector should characterize the data adequately for the 
classification problem at hand, while also limiting the size of 
the feature vector.  
 The literature on automated analysis of PD data reports a 
variety of features, which can be grouped into three classes. 
The most established are statistical features based on the 
distribution of discharges across the positive and negative 
voltage half-cycles. This includes mean pulse height, pulse 
count, and number of peaks in pulse amplitudes [10, 11]. 

 A second approach is to split the voltage cycle more finely. 
Brown et al suggest six phase segments [12]; three per half 
cycle corresponding to the rising positive segment, the 
positive peak, the falling positive segment, and falling, peak, 
and rising segments of the negative half cycle. For each of 
these phase segments, statistical features of mean, standard 
deviation, and kurtosis are calculated.  
 A more recent suggestion defined features based on a 
human expert’s analysis of a PD pattern [13]. Termed 
descriptors, these features are labels rather than continuous-
valued, and include phase position (with sample values 'zero-
crossing' or 'peaks') and shape (e.g. 'chopped sine' or 'knife-
blade'). Both voltage half-cycles are assigned labels, giving 
two features per descriptor. A third feature is defined from 
the descriptor symmetry, which takes one of two values: 
'symmetrical' or 'asymmetrical'.  
 However, bearing in mind the desirability of as small a 
feature vector as possible, it would be inappropriate to use all 
reported features for this classification problem. A set of 47 
potential features was defined, including statistical features of 
the half cycles, statistical features of six phase segments, and 
pattern descriptors. For each classification problem described 
below, the Information Gain Ratio (IGR) was used to rank 
the importance of each feature, allowing subsets of 
informative features to be used as feature vectors, and is 
calculated by: 
 

I(c,f) = [H(c) – H(c|f)] / H(f)  (1) 
 
For a classification c, a feature f, and H is entropy. The 
numerator is Mutual Information (MI) between the class and 
the feature, which is also a standard measure of the 
importance of features; however MI tends to bias towards 
features with many possible values. Since the set of 47 
potential features contains a wide range of types of feature, 
from continuous-valued statistics to some descriptors with 
only two possible labels, MI tends to promote the statistical 
features over the descriptors. IGR gives better consideration 
to the discriminating abilities of the descriptors.  
 Once the features have been ranked according to their IGR, 
a subset must be selected. In a very few cases a feature would 
have an IGR of zero, indicating the feature gave no 
information about the classification problem and could easily 
be discounted. For example, when identifying the presence of 
the 5th harmonic, the kurtosis of the positive half cycle has 
IGR=0. This does not mean that this feature should be 
permanently discounted, as it has non-zero IGR when 
identifying the presence of the 7th harmonic. This example 
highlights the information provided by each feature is 
problem-specific, and no single representative feature vector 
can be defined for all PD analysis problems. 
 As a result, a second stage of feature selection was 
required. C4.5 trees were trained on subsets of the ranked list 
of features, with the percentage accuracy of the classifier 
used to select the best feature set. The C4.5 algorithm [14] is 
a supervised machine learning technique which generates a 
decision tree for classification. Each node in the tree is a rule 



derived from the training data set, leading to leaf nodes that 
represent different classes. Once the tree is trained, new data 
can be classified by traversing the tree. 
 This meant for each classification problem (i.e. identifying 
the presence of a specific harmonic order) different groups of 
top ranked features were tested and compared. If the 
classifier using all features with IGR>0.02 out-performed all 
other classifiers, that indicates this feature vector contains the 
optimal mix of features for this classification problem. 

B.    Data Mining 
  Preliminary data mining consisted of training a classifier to 
identify the waveform ID (see Table I) from individual PD 
patterns. This classifier would not be particularly useful when 
assessing new data, such as PD data captured from an in-
service cable, since it is unlikely that one of the test 
waveforms would match exactly the network harmonics. 
Rather, the aim of training this classifier sought to confirm 
that waveform attributes can affect the dataset, and therefore 
further classifier training could proceed.  
 For the case of waveform ID identification, the classes are 
the labels 1, 7, 8, 9, 11, 12, and 13. A C4.5 tree was trained 
using 10-fold cross validation, and Table II shows the 
resulting confusion matrix. The overall accuracy of the tree 
was 59.02%.  
 

TABLE II 
WAVEFORM ID CLASSIFIER CONFUSION MATRIX  

 

Classified as Waveform 
ID # 1 7 8 9 11 12 13 

1 968 9 1 9 9 0 3 
7 4 558 144 123 65 72 78 
8 2 149 598 104 22 79 67 
9 13 110 111 565 216 27 52 

11 11 92 44 197 525 70 67 
12 1 84 79 55 79 531 190 
13 4 82 96 73 86 191 532 

 
 While the final accuracy figure may seem rather low, the 
confusion matrix allows investigation of the sources of 
inaccuracy. There is relatively high confusion between 
waveforms 7, 8, and 9, which represent the waveforms with 
lowest levels of THD. Confusion also occurs between 
waveforms 9 and 11, both of which contain the 7th harmonic 
and fundamental components only. Thirdly, waves 12 and 13 
show relative confusion, and both waves contain the same 
seven harmonic orders. In comparison, waveform 1 is the 
most accurately identified. It is the only waveform containing 
the 3rd harmonic, characterized by the highest THD 
magnitude. 
 This suggested that individual harmonic polluted waveform 
attributes each contribute to the distortion of the PD pattern. 
Since the waveforms with similar levels of THD cause 
confusion, it is not the set of harmonic orders alone that 
affects PD. However, confusion occurs between the duplicate 
sets of harmonic orders, suggesting that THD is not the only 
influence on PD either. 

 To conclude, preliminary data mining shows that the PD 
pattern is affected to some extent by the level of harmonic 
distortion and the set of harmonic orders present. 

C.    Classifier training 
  Three particular attributes of the harmonic polluted 
waveform were targeted for classification. They were: 
 classification of the set of harmonics 
 identification of the 5th harmonic 
 identification of the 7th harmonic 

The harmonic magnitude and THD were not considered for 
this initial analysis. Classifiers were trained for each of these 
three tasks. This section reports on the best feature vector for 
each task, the accuracy of the final classifier, and any 
conclusions drawn from classifier performance. 
 

1) Classification of the set of harmonics: The intended 
output of this training is a classifier that can identify the set 
of harmonics polluting the test waveform by considering 
features of the PD pattern. Specifically, an accurate classifier 
would associate PD generated under waveform 1 with the 3rd 
harmonic; waveform 7 with the fundamental frequency; 
waveform 8 with the 5th harmonic; waveforms 9 and 11 with 
the 7th harmonic; and waveforms 12 and 13 with the grouping 
of 5th, 7th, 11th, 13th, 23rd, and 25th harmonics (hereafter 
labelled 'multiple'). This gives five classes. 
 The feature selection procedure resulted in a vector of 38 
features, comprising a mixture of all three types of feature. A 
C4.5 tree was trained using 10-fold cross validation, giving 
an overall accuracy of 77.5%. The confusion matrix is shown 
in Table III, showing a strong diagonal indicating an accurate 
classifier. Of each set, a classification of the fundamental 
frequency is inaccurate most often. 
 

TABLE III 
HARMONIC SET CLASSIFIER CONFUSION MATRIX  

 

Classified as Harmonic 
Set 3rd Fundamental 5th 7th Multiple 
3rd 971 7 0 10 4 

Fundamental 9 613 158 89 149 
5th 2 165 687 50 92 
7th 11 75 41 1687 235 

Multiple 4 152 78 265 1537 
 

2) Identification of the 5th harmonic: Determining the 
presence of the 5th harmonic is a binary classification task, 
where an accurate classifier would give a positive response 
for data from waveforms 8, 12, and 13; and a negative 
response for data from waveforms 1, 7, 9, and 11. In contrast 
to the previous classifier, the accuracy of this classifier 
should indicate whether or not there is some particular 
change in the PD pattern caused by the 5th harmonic only; i.e. 
the presence of the 5th harmonic can be identified amongst 
multiple harmonic orders and where it exists in isolation, and 
its absence can be determined from the fundamental and 
other harmonic order waveforms. 
 A feature vector of 37 features was most accurate, and the 
resulting C4.5 tree is 83.8% accurate. The confusion matrix 



(Table IV) shows approximately equal numbers of false 
positives and false negatives. These results highlighted an 
increased asymmetrical distribution of incorrect 
classifications (Table V). Most errors occurred when 
diagnosing the absence of the 5th harmonic from the 
fundamental wave. 

TABLE IV 
PRESENCE OF 5TH HARMONIC CLASSIFIER CONFUSION MATRIX  

 

Classified as Presence 
 False True 

False 3482 577 
True 570 2462 

 
TABLE V 

ERRORS IN 5TH HARMONIC CLASSIFIER 
 

Waveform 
ID # Description Misclassifications Percentage 

1 NO 5th 2 0.20% 
7 NO 5th 306 29.3% 
9 NO 5th 147 13.4% 

11 NO 5th 122 12.1% 
8 5th only 201 19.7% 

12 Multiple 163 16.0% 
13 Multiple 206 19.4% 

 
3) Identification of the 7th harmonic: As with the 5th 

harmonic, this is a binary classification task. The expected 
outcome is for waveforms 9, 11, 12, and 13 to give a positive 
response; and waveforms 1, 7, and 8 to give a negative 
response. Feature selection highlighted 25 features as the 
optimal set: significantly smaller than for either of the 
previous classification tasks. After training using 10-fold 
cross validation, a C4.5 tree had 90.9% accuracy. The 
confusion matrix is shown in Table VI, showing 
approximately equal numbers of false positives and 
negatives. More detailed inspection of the incorrect 
classifications shows the highest accuracy from waveforms 1 
and 11, then 9 and 12, and less certainty from waveforms 7, 
8, and 13 (Table VII). These latter sets of waveforms have 
lowest levels of THD, suggesting that the presence or 
absence of the 7th harmonic is easier to determine at higher 
levels of wave distortion. 
 

TABLE VI 
PRESENCE OF 7TH HARMONIC CLASSIFIER CONFUSION MATRIX  

 
 

Classified as Presence 
 False True 

False 2680 326 
True 322 3763 

 
TABLE VII 

ERRORS IN 7TH HARMONIC CLASSIFIER 
 

 

Waveform 
ID # Description Misclassifications Percentage 

1 NO 7th 12 1.20% 
7 NO 7th 194 18.6% 
8 NO 7th 120 11.8% 
9 7th only 89 8.14% 

11 7th only 19 1.89% 
12 Multiple 70 6.87% 
13 Multiple 144 13.5% 

III. DISCUSSION OF RESULTS 
 

 The results of this investigation are promising, showing 
classifier accuracies of 77.5% to 90.9%. This suggests there 
is enough regularity in the PD patterns to identify attributes 
of the harmonic content of the voltage waveform, and 
therefore different attributes of the resultant harmonic 
influenced waveforms cause particular changes to the 
behaviour of PD.  Further research attempted to improve the 
accuracy of attribute identification by investigating other 
classifier techniques. In particular, recent research on the use 
of Support Vector Machines (SVMs) for PD data analysis has 
suggested accuracies exceeding 99% are possible [15]. On 
the other hand, comparative research into ship-board fault 
diagnosis suggests SVMs did not perform better but in some 
cases more poorly than C4.5 [16]. SVMs were explored as an 
alternative to C4.5 for two of the three classification 
problems described above: harmonic set classification and 
identification of the 7th harmonic. While accuracies could be 
improved by a few percentage points, extremely good results 
could not be achieved. This section describes the approach to 
SVM training, and possible reasons for the disparity in the 
literature. 

 
A.    Training 

 A Support Vector Machine is a supervised machine 
learning technique for classification [17]. It works by 
converting input data into higher dimensional space using a 
particular function called a kernel function, with the aim of 
separating different classes by a hyperplane in the higher 
dimensional space. The learning task is to find the hyperplane 
between classes. While there is no definitive methodology for 
appropriate training of SVMs, there are some generally 
agreed best practices to follow [18]. For a classification task 
that may be non-linear, the Radial Basis Function (RBF) 
kernel is recommended. This is parameterized by two values: 
the error cost C, and the RBF width parameter, γ. 

Before training, input data must be normalized and 
appropriate values for C and γ chosen. There are no heuristics 
reported for selecting these values, therefore an exhaustive 
search technique called grid-search is recommended [18]. 
This involves training SVMs using all pairs of values of C 
and γ between certain limits (rough grid search); finding the 
area of parameter space that shows most accuracy; then 
training SVMs using pairs of more finely-grained values 
within that region (fine grid search). 

For rough grid search, the search space was: 
C = 2-5, 2-3, ... , 215; γ = 2-15, 2-13, ... , 23 

Once the SVM with highest accuracy was determined, that 
<C=2c, γ=2g> pair was the source of fine grid search: 

C = 2(c-0.5), 2(c-0.25), 2c, 2(c+0.25), 2(c+0.5); 
γ = 2(g-0.5), 2(g-0.25), 2g, 2(g+0.25), 2(g+0.5) 

The most accurate SVM resulting from fine grid search 
became the final classifier.  

Classification of the harmonic set found the best parameters 
to be C=212.25, γ=2-3.75. The overall accuracy of the classifier 
was 81.10%, giving an improvement of 3.6% over C4.5. For 



identification of the presence of the 7th harmonic, the best 
parameters were found to be C=24.75, γ=23. The overall 
accuracy was 91.21%, an improvement of 0.31% over C4.5. 
 
B.    Results 

 Clearly, the accuracies of SVM and C4.5 for this study are 
very similar. This concurs with the result reported in [16] for 
network fault diagnosis. Given there is little difference in 
accuracy, C4.5 is preferable for practical reasons. First, the 
process of grid search to parameterize the SVM takes 
significantly longer than setting up a C4.5 training run. 
Secondly, the rules induced by C4.5 are human-readable and 
can be studied for insight into the classification problem, 
whereas the support vectors resulting from a trained SVM are 
a comparatively obscure coding of the knowledge. However, 
the disparity between accuracy reported in [15] and results 
given here merits further discussion. Three possible sources 
of difference are considered below. 

The classification problem addressed is different in both 
cases. Despite both utilizing PD data, this research attempts 
to identify harmonic attributes whereas [15] identifies defect 
type. Harmonic attribute identification is significantly 
different and perhaps more challenging than defect type 
identification. However, other research into defect 
classification by machine learning does not suggest it is a 
particularly easy task [19]. The sizes of training data sets are 
different in each case. While [15] uses 30 examples of five 
defects at three different voltage levels, giving datasets of 90 
patterns per class, the research here uses between 999 and 
1094 patterns for each test waveform. This order of 
magnitude difference may result in a more diverse set of 
patterns, increasing classification difficulty, but potentially 
more realistic. It is also possible that the cross validation 
training coincidentally selected a favourable test set with 
significantly higher accuracy than other sets, which is due to 
a quirk of the data rather than a facet of the technique. 

Thirdly, different feature vectors are used for classification 
in each case. [15] considers features relating to phase 
position, frequency, and wavelet decomposition of the PD 
pattern, and report the interesting result that all three sets 
perform equally well on cross validation testing, but when 
considering generalization to another voltage level, phase-
related features perform most poorly. The research reported 
here focuses on phase-related features, however cross 
validation is used for training and testing, and therefore this 
generalization concern should not be an issue. 
 

V. CONCLUSIONS 
 

 Acceptable classifier accuracies were achieved with C4.5 
and SVM techniques for identifying harmonic attributes from 
harmonic influenced electrical treeing PD patterns. This 
provides encouraging evidence to further investigate avenues 
of identifying the harmonic content present in the excitation 
voltage. Future testing employing insulation defects with 
decreased ageing state variation (e.g. voids) applied to 
different machine learning techniques is essential to 
determine the most appropriate. Thus diagnostic 

interpretation of condition monitoring data with increased 
immunity to the stress factors influencing the working 
environment will improve the asset manager’s holistic view 
of an asset’s health. 
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