Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Using a Bayesian belief network to aid differential diagnosis of tropical bovine diseases

McKendrick, I.J. and Gettinby, G. and Gu, Y. and Reid, S.W.J. and Revie, C.W. (2000) Using a Bayesian belief network to aid differential diagnosis of tropical bovine diseases. Preventive Veterinary Medicine, 47 (3). pp. 141-156. ISSN 0167-5877

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In Chile, Mycobacterium avium subsp. paratuberculosis (Map) has been isolated on several occasions and clinical cases have been reported. Nevertheless, diagnostic tests have not yet been validated for this agent in the Chilean setting. The objective of the study was to validate a commercial ELISA to detect Map shedding dairy cows in management conditions, prevalence and stages of infection existing in Southern Chile, utilising different statistical approaches. Blood and faeces were collected from 1333 lactating cows in 27 dairy herds (both large commercial and smallholder dairy farms) between September 2003 and August 2004. Within the herds up to a maximum of 100 dairy cows were selected based on age (≥3 years old) and, if present, clinical signs of a Map infection. In herds with less than 100 cows, all cows ≥3 years old were sampled. Blood samples were tested using a commercial ELISA kit (IDEXX Laboratories, Inc.). Faecal samples were cultured on Herrold's Egg Yolk Medium (HEYM). Latent class models (i.e. maximum likelihood (ML) methods and Bayesian inference) were used to determine the validity of the ELISA. Map was cultured from 54 (4.1%) cows and 10 (37.0%) herds, which were all large, commercial dairy herds. As a result of empty cells in the cross-tabulations, the ML model provided the same results as the validation with faecal culture as the gold-standard. In the Bayesian model, the Se and Sp of the ELISA were estimated to be 26% (95% CI: 18-35%) and 98.5% (95% CI: 97.4-99.4%), respectively. For faecal culture, the Se was 54% (95% CI: 46-62%) and the Sp was 100% (95% CI: 99.9-100%). Interestingly, the prevalence in the smallholder dairy farms was estimated to be 8% even though there were no faecal culture positive cows detected in those herds. There was no significant correlation between the two tests. The advantage of Bayesian inference is that the Se and Sp of both tests are obtained in one model relative to the (latent) true disease status, the model can handle small datasets and empty cells and the estimates can be corrected for the correlation between tests when the tests are not conditionally independent. Therefore, Bayesian analysis was the preferred method for Map that lacks a gold-standard and usually has low cow-level prevalence.

Item type: Article
ID code: 2639
Keywords: Paratuberculosis, test validation, Bayesian analysis, Chile, bovine disease, databases, datasets, Electronic computers. Computer science, Databases, Food Animals, Animal Science and Zoology
Subjects: Science > Mathematics > Electronic computers. Computer science
Bibliography. Library Science. Information Resources > Information resources > Databases
Department: Faculty of Science > Computer and Information Sciences
Unknown Department
Faculty of Science > Mathematics and Statistics
Related URLs:
Depositing user: Strathprints Administrator
Date Deposited: 02 Mar 2007
Last modified: 04 Sep 2014 10:14
URI: http://strathprints.strath.ac.uk/id/eprint/2639

Actions (login required)

View Item