Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Comparing diagnoses from expert systems and human experts

Seidel, M. and Breslin, C. and Christley, R.M. and Gettinby, G. and Reid, S.W.J. and Revie, C.W. (2003) Comparing diagnoses from expert systems and human experts. Agricultural Systems, 76 (2). pp. 527-538. ISSN 0308-521X

Full text not available in this repository. (Request a copy from the Strathclyde author)


This paper discusses a comparison of one heuristic and two Bayesian belief network based expert systems used to aid veterinarians in the process of differential diagnoses of equine diseases where coughing is the presenting clinical sign. Each implementation infers the likelihood of the presence of a number of diseases based on information on the presence or absence of certain clinical signs. The Bayesian belief network approaches are similar except that one includes the use of prior information in the form of disease prevalence estimates. Both are implemented using the Hugin software package. The three approaches were compared using test cases and the lists of resulting diagnoses were examined for agreement using a measure of concordance. The results indicated a difference between the heuristic approach which used the rule-based scoring mechanism and the Bayesian systems. There was, however, little difference between the diagnoses produced by the two Bayesian implementations, indicating that the incorporation of prevalence data makes little difference in diagnostic systems of this type. The findings were also compared with those of clinical experts. The analysis indicated that clinicians were not always in agreement. Moreover, using the same set of test cases the experts were more in agreement with the Bayesian approaches than with the heuristic approach.