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ABSTRACT 

Multiple gravity assist (MGA) trajectories represent a particular class of space 
trajectories in which a spacecraft exploits the encounter with one or more celestial 
bodies to change its velocity vector; they have been essential to reach high v 
targets with low propellant consumption. The search for optimal transfer trajectories 
can be formulated as a mixed combinatorial-continuous global optimisation 
problem; however, it is known that the problem is difficult to solve, especially if 
deep space manoeuvres (DSM), are considered. 

This thesis addresses the automatic design of MGA trajectories through global 
search techniques, in answer to the requirements of having a large number of 
mission options in a short time, during the preliminary design phase. Two different 
approaches are presented. The first is a two-level approach: a number of feasible 
planetary sequences are initially generated; then, for each one, families of the MGA 
trajectories are built incrementally. The whole transfer is decomposed into sub-
problems of smaller dimension and complexity, and the trajectory is progressively 
composed by solving one problem after the other. At each incremental step, a 
stochastic search identifies sets of feasible solutions: this region is preserved, while 
the rest of the search space is pruned out. The process iterates by adding one planet-
to-planet leg at a time and pruning the unfeasible portion of the solution space. 
Therefore, when another leg is added to the trajectory, only the feasible set for the 
previous leg is considered and the search space is reduced. It is shown, through 
comparative tests, how the proposed incremental search performs an effective 
pruning of the search space, providing families of optimal solutions with a lower 
computational cost than a non-incremental approach. Known deterministic and 
stochastic methods are used for the comparison. The algorithm is applied to real 
MGA case studies, including the ESA missions BepiColombo and Laplace. 

The second approach performs an integrated search for the planetary sequence 
and the associated trajectories. The complete design of an MGA trajectory is 
formulated as an autonomous planning and scheduling problem. The resulting 
scheduled plan provides the planetary sequence for a MGA trajectory and a good 
estimation of the optimality of the associated trajectories. For each departure date, a 
full tree of possible transfers from departure to destination is generated. An 
algorithm inspired by Ant Colony Optimization (ACO) is devised to explore the 
space of possible plans. The ants explore the tree from departure to destination, 
adding one node at a time, using a probability function to select one of the feasible 
directions. Unlike standard ACO, a taboo-based heuristics prevents ants from re-
exploring the same solutions. This approach is applied to the design of optimal 
transfers to Saturn (inspired by Cassini) and to Mercury, and it demonstrated to be 
very competitive against known traditional stochastic population-based techniques. 
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PR  Mean radius of planet 
r  Position vector 
r̂  Radial unit vector 
s  Planetary sequence 
t  Time 

t̂  Tangential unit vector 

0t  Initial (or launch) time 
T  Time of flight 

convtol  Tolerance on convergence (modified MACS) 

ftol  Tolerance on global optimality 

u Bound of basin 
v  Velocity vector 

0v  Launch excess velocity (relative to planet) 

ev  Exhaust velocity of propellant mass 

v  Hyperbolic excess velocity 
V Volume 

planetw  Weight on planet selection (ACO-MGA) 

typew  Weight on type of transfer selection (ACO-MGA) 
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x  Solution vector 
X  -set 
y Objective value 
  Fraction of time of flight at which the DSM occurs 
  Weight 
  Attitude of the swing-by hyperbola plane 

  Deflection angle (swing-by) 
  Launch declination 
  Non-dimensional, uniform launch declination 

f  Distance from global optimum 

  Discriminant 
v  Change in velocity 

  Small angular displacement 

  Threshold of the  -set 
  Attitude of swing-by plane (Izzo’s model) 

  In-plane angle (right ascension) 
  True anomaly 
  Non-dimensional, uniform in-plane angle (right ascension) 




 True anomaly of spacecraft on planet’s orbit at intersection time 

θ̂  Transversal unit vector 
   or  (ACO-MGA model) psr 0v

  Distance between planet and hyperbola asymptote (swing-by) 
  Planetary constant ( ) mG

   tan 2  

  Greek Pi (3.1415…) 
  Swing-by plane 

l  Radius of neighbourhood (modified MBH and modified MACS) 
τ  Pheromone distribution vector 
  Number of intervals on each dimension 
  Out-of-plane angle (declination) 

0  In-plane launch direction (ACO-MGA model) 

  Difference in orbit orientation (ACO-MGA model) 
  Pruning criterion 
ψ  Two criterion vector (modified MACS) 

  Rotation of line of apsides (in powered swing-by) 
  Right ascension of ascending node 
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Subscripts and Superscripts 

0  Referred to departure or launch 

1  Generic initial state 

2  Generic final state 
   1 2,   Referred to intersection point 1 or 2 (ACO-MGA model) 

abs  Absolute 

c  Candidate 

d  Discontinuity 

DSM  Referred to deep space manoeuvre 

est  Estimated 

f  Final 

feas  Feasible 

h  Out-of-plane component 

inc  Incomplete 

int  Intersection 
 int  At selected intersection 

l  Lower bound 

,L i  Related to level i only 
 i  At ith step (in algorithms) 

min  Minimum 

max  Maximum 

M  Referred to a point in the deep space or the manoeuvre in it 

P  Referred to planet 

T  Referred to type of transfer (ACO-MGA) 

  Transversal component 
  Incoming 
  Outgoing 
  Optimal 
  In the affine space, non-dimensional 
̂  Unit vector 
  Residual after pruning, or pruning threshold 

  At infinity 
  Referred to the case with velocity overturning (swing-by) 
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Operators 

  Norm of a vector, cardinality of a discrete set, dimensionality of a 

real-valued set 
  Differentiation with respect to time 

 B   Behaviour function (modified MACS) 

d  Differential 

 dI   Dominance index (modified MACS) 

 N   Neighbourhood of a given point (modified MBH) 

 Vol   Volume of a set 

  Generic variation of a quantity 
  Cartesian product 
  Dominance 
  And 
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INTRODUCTION 

This chapter introduces multiple gravity assist (MGA) trajectories and their optimal 
design. First, a brief overview of past, present and future MGA missions is given. 
This is followed by an overview of classic and modern techniques for mission 
design, including some based on global optimisation techniques. Then, the 
motivations and objectives of this work will be presented. 

1.1 Space Exploration 

Space exploration has always fascinated the human mind: the roots of men’s desire 
to lift from Earth are to be found in ancient times, when men were impressed by the 
presence of other bodies floating in the sky. The sky, stars and planets represented 
the object of their observation, and methods and instruments kept evolving and 
improving from then on. The first great step, which provided a connection between 
the Earth and the universe, was the invention of the refracting telescope: at the 
beginning of the 17th century, Galileo was the man who improved it at a point that 
the rings of Saturn and the moons of Jupiter could be clearly seen [1]. Since then, 
the images of the universe got more and more focused and accurate. The initial 
fascination turned into studying the possibility for human beings to explore celestial 
bodies more closely. The first important work that theorizes this possibility was 
written by the Russian scientist Konstantin Tsiolkovsky in 1903 [2]. Consequently, 
during the first half of the 20th century many studies were dedicated to the building 
of solid and liquid-propellant rockets; in particular, the German V-2 rocket [3] is 
the first human artefact to achieve sub-orbital spaceflight: the year was 1942. 

Floating in outer space remained a dream for men at that time, but became a 
reality for animals; that was due to the necessity of testing the survivability outside 
the Earth’s atmosphere and with no gravity. Between 1940 and 1960, fruit flew at 
first, then monkeys, mice and dogs were launched into space [4], particularly by the 
United States and USSR. The dog Laika acquired a peculiar mention for being the 
first animal in orbit. Yet Laika died during the flight and many other similar tests 

1 
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were necessary to grant the success of Yuri Gagarin’s mission: on 12 April 1961 he 
reached the outer space and orbited the Earth [5]. 

That decade saw the greatest step in the history of space exploration, mainly 
pushed by the space race between USA and USSR; the eight years after the first 
human being in space prepared the approach to another celestial body. The Moon 
became the first destination to be explored beyond the Earth’s atmosphere: on 21 
July 1969 American Neil Armstrong and Edwin E. Aldrin set foot on the Earth’s 
satellite on a mission aboard Apollo 11 [6]. 

The exploration of the universe around our world had just begun; from 1970s 
flybys and orbital flights were conducted around planets such as Venus [7], Jupiter 
[8], Mercury [9], Saturn and, above all, Mars [10-14]. This last one seems to be the 
next space destination where to put the terrestrial flag [15, 16]. 

Although there is no plan to send human beings to farther planets, still their 
robotic exploration is of great interest, for scientific reasons. Unfortunately, 
reaching Mercury, Jupiter or the outer part of the solar system, is much more 
difficult than reaching Mars. Current launch and propulsion capabilities are not 
sufficient to deliver the required payload to those destinations: for example, the 
mass of propellant that yields the required change in velocity for an Earth-Saturn 
Hohmann1 transfer is 99% of the mass of the spacecraft, considering current 
chemical engine technology. It is evident that the amount of propellant to deliver a 
payload and the subsystems to make it functional could be enormous. For this 
reason, gravity assist manoeuvres have been devised to gain the required change in 
velocity with no propellant consumption. 

1.2 Multiple Gravity Assist Missions 

A gravity assist manoeuvre (GAM, also called swing-by or gravitational slingshot), 
is the use of the relative movement and gravity field of a planet or other massive 
celestial body to change the velocity of a spacecraft [17]. This is achieved with a 
close proximity swing-by of the celestial body so that its gravity produces a change 
in the velocity vector of the spacecraft. The complete mathematical formulation of a 
swing-by will be presented in detail in Chapter 2. For the moment, we just need to 
imagine that the spacecraft during its interplanetary journey encounters a massive 
body with some relative speed. Due to this “close passage”, there is a momentum 
exchange between the spacecraft and the body, so that the spacecraft increases, 
decreases or rotates its inertial velocity. The body loses a very small proportion of 
its orbital momentum due to the significant mass compared to that of the probe. 
However, the change in velocity of the spacecraft can be significant. 

If no gravity assists are used throughout an interplanetary journey, the whole 
velocity change ( ) needed to go from the Earth’s orbit to the target orbit shall be 
provided by a propulsion system. Usually the launcher gives the first part of the 
velocity change, then an upper stage provides the velocity necessary to leave the 

v

                                                      
1 The Hohmann transfer is the bi-impulse direct transfer between circular, coplanar orbits 
with minimum change in velocity. 

http://en.wikipedia.org/wiki/Gravity
http://en.wikipedia.org/wiki/Spacecraft
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Earth’s sphere of influence, and then the spacecraft’s thruster completes the transfer 
by providing the  to complete the journey and possibly to insert into the target 
orbit, if any. 

v

In traditional propulsion systems, the change in velocity (e.g. acceleration) is 
caused by the ejection of an accelerated propellant mass. Therefore, the available 
impulse is limited by the propellant mass on-board. Thus saving on propellant mass 
means either a lighter spacecraft, or more mass available for the payload. In turn, a 
lighter spacecraft implies a cheaper launch (the launch has a cost per kilogram of 
mass), or a launch into a higher energy orbit. Other innovative propulsion systems 
exist, like solar sails [18], that do not consume any mass. The current technology, 
though, poses some limitations in constructing large, deployable sails, and therefore 
they have not been used yet for interplanetary travel. 

Gravity assists have been exploited in the past 40 years to reach targets with 
very high or very low energy orbits with respect to the Earth, or even to 
considerably change the heliocentric orbit inclination. All these types of orbits are 
known under the category of high- v  targets, due to the high v  budget necessary 
to reach them from Earth. 

1.2.1 Past, Present and Future Missions 
The importance of gravity assist manoeuvres is testified by the high number of 
missions which have made use of this enabling technology in the history of 
interplanetary space exploration. This section contains an overview of the past and 
current interplanetary missions that exploited one or more gravity assist. In 
addition, two very ambitious MGA missions, currently under study, will be 
presented. 

The Mariner 10 probe [9] was the first spacecraft to use the gravitational 
slingshot effect to reach another planet. In fact, one of the objectives of this NASA 
mission was to prove the possibility of using gravity assist manoeuvres. The probe 
swung by Venus on February 5, 1974, on its way to becoming the first spacecraft to 
explore Mercury. 

Pioneer 11 [8] was the second mission of the Pioneer program to investigate 
Jupiter and the outer solar system (after its sister probe Pioneer 10) and the first to 
explore Saturn and its main rings. Launched in 1973, Pioneer 11 used Jupiter’s 
mass in a gravity assist to get the energy to reach Saturn. The spacecraft made a 
successful swing-by of Saturn and then followed an escape trajectory from the solar 
system. The interplanetary trajectories of Pioneer 10 and 11 are shown in Fig. 1.1. 

After the success of Mariner and Pioneer, NASA decided to continue the 
interplanetary exploration programme with the Voyager 1 and Voyager 2 probes 
[19], with the ambitious aim of including MGAs in the same mission. Although 
they were originally designated to study just Jupiter and Saturn, the two probes 
were able to continue their mission into the outer solar system. Both probes were 
injected into a direct transfer to Jupiter in 1977. Voyager 2 was launched first, and 
encountered Jupiter, Saturn, Uranus and Neptune (sequence EJSUN). Voyager 1 
was instead launched on a faster trajectory, which enabled it to reach Jupiter and 
Saturn sooner at the consequence of not visiting the outer planets. Both spacecraft 

 

http://en.wikipedia.org/wiki/Pioneer_program
http://en.wikipedia.org/wiki/Jupiter
http://en.wikipedia.org/wiki/Outer_solar_system
http://en.wikipedia.org/wiki/Pioneer_10
http://en.wikipedia.org/wiki/Saturn
http://en.wikipedia.org/wiki/Mass
http://en.wikipedia.org/wiki/Gravity_assist
http://en.wikipedia.org/wiki/Solar_system
http://en.wikipedia.org/wiki/Solar_system
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are currently on course to eventually exit the solar system, and Voyager 1 is 
currently the human made object farthest from Earth (see Fig. 1.2). 

The two Voyager missions were made possible by a very favourable alignment 
of the outer planets (Jupiter, Saturn, Uranus and Neptune), which happened from 
1970 to 1990: a similar alignment will not occur again until the middle of the 22nd 
century. This is the reason why the trajectories of the two probes were named 
“Grand Tour” [20]. In fact, the main design constraint of a MGA trajectory is to 
have all the celestial bodies in the right place at the right time. This is known as the 
“phasing problem”, and, throughout this work, we will see how to address it and 
when to neglect it. 

 

 
Fig. 1.1. Pioneer 10 and 11 trajectories (credit: NASA). 

 

 
Fig. 1.2. Voyager 1 and Voyager 2 trajectories (credit: NASA). 

http://upload.wikimedia.org/wikipedia/commons/5/58/Voyager_Path.jpg�


1.2 Multiple Gravity Assist Missions 5 
 

The Galileo [21] spacecraft was originally designed to be injected into a direct  
transfer to Jupiter from the space shuttle. New safety protocols introduced as a 
result of the Challenger accident, in 1986, forced Galileo to use a lower-powered 
upper stage booster rocket, which could not provide the necessary energy. The 
trajectory of Galileo was re-designed, including a swing-by of Venus and two 
swing-bys of the Earth, allowing the probe to reach Jupiter in 1995. After injection, 
the spacecraft travelled around Jupiter in elongated elliptical orbits, designed for 
close up fly-bys of Jupiter's largest moons. The successful mission was even 
extended to perform a number of fly-bys of Europa and Io. 

The trajectory of Cassini-Huygens [22-24] is the most complex MGA 
trajectory designed for a mission to an outer planet. The aim of the mission was to 
study Saturn and its complicated planetary system of satellites. The mass of the 
spacecraft at launch was an impressive 5600 kg, of which more than 3000 kg of 
propellant, needed for deep space manoeuvring and for the final injection around 
Saturn. Due to the high mass budget of the spacecraft, the launch hyperbolic escape 
velocity was very low (below 4 km/s). Therefore a complex MGA trajectory was 
designed: the spacecraft was launched in 1997 and entered into orbit around Saturn 
in 2004, exploiting two gravity assists of Venus, one of the Earth, and one of Jupiter 
(sequence EVVEJS, Fig. 1.3). The Cassini probe, once orbiting around Saturn, 
made also use of a huge number of swing-bys of several moons to modify its orbit 
in several ways, such to study the Saturn system in the most complete way possible. 

 

 
Fig. 1.3. Cassini trajectory (credit: ESA/NASA). 

 
The second mission to Mercury, NASA’s MESSENGER [25, 26], launched in 

2004, also made use of a swing-by of the Earth and two additional swing-bys of 
Venus to reach its target. It also performed three swing-bys of Mercury to lower its 
relative velocity and ease the orbital insertion manoeuvre, which is scheduled for 
2011. The complete planetary sequence is then EEVVMeMeMeMe (see Fig. 1.4). 

For this mission, the gravity assist manoeuvres were used to both change the 
in-plane velocity components of the spacecraft (energy change), and to change the 
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orbital inclination, as the orbit of Mercury has an inclination of about 7 degrees 
over the ecliptic. 

 

 
Fig. 1.4. MESSENGER trajectory (from [25]). 

 
The European Space Agency (ESA) Rosetta [27] probe was launched in 2004, 

with the scope of rendezvousing the comet 67P/Churyumov-Gerasimenko, and 
releasing a lander, Philae, on it. Similar to Cassini, this mission exploited a rather 
complicated sequence of gravity assists perform the rendezvous with minimum 
propellant mass. Rosetta used an Earth swing-by, a Mars swing-by, followed by two 
more Earth swing-bys. The rendezvous with the comet is scheduled for 2014 
(sequence EEMEECo, Fig. 1.5). 

A fast trajectory (Fig. 1.6), exploiting only one gravity assist (of Jupiter), was 
designed, instead, for the NASA New Horizons [28] mission to Pluto and the 
Kuiper belt. The spacecraft was launched in 2006, and the Jupiter swing-by 
happened in 2007. Despite the fast hyperbolic heliocentric trajectory, the arrival at 
Pluto is expected to occur in 2015, and in the following years the probe will cross 
the Kuiper belt. 

The missions described so far performed gravity assist manoeuvres to reach 
destinations with a small orbital inclination difference with respect to the ecliptic. 
The gravity manoeuvres were used to change mainly the energy of the orbit. Other 
missions, instead, used the gravitational slingshots to change the orbital plane. The 
space probe Ulysses [29], designed by NASA and ESA to study the solar poles and 
launched in 1990, exploited a single swing-by of Jupiter, in 1992, to increase the 
inclination to the ecliptic by 80.2 deg. 

Other MGA missions are currently under investigation by the major space 
agencies. 

 

http://upload.wikimedia.org/wikipedia/commons/5/5e/MESSENGER_trajectory.svg�
http://en.wikipedia.org/wiki/67P/Churyumov-Gerasimenko
http://en.wikipedia.org/wiki/Gravity_assist
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Fig. 1.5. Rosetta trajectory (credit: http://www.enterprisemission.com). 

 

 
Fig. 1.6. New Horizons interplanetary trajectory (from [28]). 

 
BepiColombo [30-34] is the ESA cornerstone mission to Mercury, in 

partnership with JAXA (Japan Aerospace Exploration Agency). Several options 
have been studied in the last 10 years. All of them include one or more swing-bys of 
the Earth, Venus and Mercury. Some include also one or more swing-bys of the 
Moon. An example showing a MoEVVMeMeMeMe sequence can be seen in Fig. 
1.7. Two orbiters and a transfer module, consisting of electric propulsion and 
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chemical propulsion units, will be launched as a single composite spacecraft. The 
expected launch date is 2013, and arrival at Mercury is in 2019. 

The total transfer time is about six years, two of which are spent before the first 
encounter of Mercury. As a comparison, a direct Hohmann transfer to Mercury 
takes only 105 days. A long mission time, and the need for an accurate targeting of 
the celestial bodies during swing-by manoeuvres demand for long and precise 
operations. Therefore, the gain in propellant offered by gravity assist manoeuvres 
comes at the cost of a higher operation cost. A trade-off between mission time and 
propellant mass is always required. In this sense, designing an MGA trajectory is 
analogous to solving a multiple objective optimisation problem, in which the two 
objectives are partially conflicting. In this work, it will be shown how to take into 
account the two merit functions. 

ESA, NASA and JAXA are also studying a mission to Jupiter and the Jovian 
moon system. The mission is currently known as Europa Jupiter System Mission 
(EJSM) or Laplace [35]. With the ambitious goal of determining whether the Jupiter 
system harbours habitable worlds, the mission consists of two separate spacecraft, 
possibly to be launched in 2020. Both spacecraft will use Venus, Earth, Earth 
gravity assists to reach Jupiter (sequence EVEEJ). The mission will then continue 
around Jupiter with multi-year tours of the Jovian system, including many flybys of 
Io, Europa, Ganymede and Callisto. Finally, the two probes will inject around 
Europa and Ganymede respectively. For a more detailed overview of the phases of 
this mission, see Section 4.2. 

These last two missions will be used as case studies in this work. 
 

 
Fig. 1.7. One of the trajectories investigated for BepiColombo. Red and green arcs 

are thrusting arcs. From [32]. 

x, km

y,
 k

m
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1.2.2 Classic Design Techniques 
As the overview of the missions demonstrates, MGA trajectories have been 
extensively investigated over the last forty years. Especially in the early times, their 
preliminary design was approached mainly relying on the intuition of mission 
designers in unison with analysis tools, based on a number of simplifying 
assumptions, such as the Tisserand’s graph [36, 37]. This tool will be presented in 
detail later in this work (see Appendix E for an overview and Chapter 4 for an 
application); for now it will suffice to say that it allows the definition of possible 
gravity assist sequences in a given planetary system. 

However, graphical tools, like the Tisserand’s graph, are unsuitable to design 
transfers to highly eccentric or inclined orbits. Moreover, they neglect the phasing 
problem, and thus do not give any information on the departure time. Also, they 
cannot be used to plan intermediate propelled manoeuvres or v -GAM transfers. 

All these techniques were mainly used to scan a large range of alternative 
options in order to identify a restricted number of potentially good solutions (or first 
guesses). 

The accurate design of these solutions was performed as a second step, by 
using higher fidelity models, local optimisation techniques, and optimal control 
theory [38], but the use of these techniques was constrained by the limited 
computing power available at that time. However, any iterative local solution 
method based on recursive formulas (e.g. Newton or quasi-Newton methods) 
requires a first guess solution. The choice of the first guess affects the convergence 
of the method and the quality of the optimised solution. It follows that the first step 
in designing a trajectory, i.e. the identification of a first guess, has a great impact on 
the final solution.  

In addition, even for simple planet-to-planet transfers, there could be points of 
discontinuity, non-differentiability and multiple local minima [39-41]. All these 
features of the search space can make the identification of a globally optimal 
solution problematic. Note that, although the global optimum is not generally 
needed to satisfy mission requirements, its identification would be useful to set a 
threshold on the best achievable result. 

1.2.3 Multi-Impulse Trajectories 
A common approximation that was (and still is) used to design interplanetary 
trajectories is that of considering high-thrust arcs, as instantaneous velocity 
changes, or impulses: i.e., to assume that the engine can provide an amount of thrust 
such that the velocity vector changes in a negligible time. When these manoeuvres 
happen within a planet-to-planet leg, they are named deep space manoeuvres 
(DSM). 

Although this approximation simplifies considerably the problem, it was shown 
that the complexity of the search space increases consistently when DSMs are 
considered along a MGA trajectory: the objective function presents a higher number 
of local minima. This phenomenon is deeply studied and clearly shown in [41]. The 
authors consider two test cases: a direct planet to planet transfer, and a transfer 
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through a gravity assist. In both cases, first the ballistic case is considered, then a 
DSM is inserted either between the planets or after the swing-by. The result is that 
the DSM increases the number of optimal feasible paths. Although the globally 
optimal launch window is still the same, the number of opportunities for that 
window has increased and the distribution of local minima becomes almost 
continuous over a wide set of launch dates. The authors conclude that, whereas an 
increase in the degrees of freedom due to the DSM could be somehow expected, 
less obvious is the benefit in terms number of optimal solutions resulting from the 
increased complexity and multimodality of the problem. 

This once again highlights the importance of the selection of one or more first 
guesses, before the local optimisation step. 

1.2.4 New Trends 
The modern approach to space mission design steps through phases of increasing 
complexity, the first of which is always a mission feasibility study. In order to be 
successful, the feasibility study phase has to analyse, in a reasonably short time, a 
large number of different mission options. Each mission alternative can serve as a 
first guess for more detailed and sophisticated analyses, at a later design phase, and 
each mission option requires the design of one or more optimal trajectories. 

Therefore, it would be desirable to automatically generate many optimal or 
nearly optimal solutions, over the range of the design parameters (escape velocity, 
launch date, time of flight, etc…), that are accurate enough to allow a correct trade-
off analysis. In other words, the decision maker should be presented with as many 
options as possible, with each option accurate enough to make the correct decision. 

In the last two decades, different methods and tools have been proposed for the 
automatic design of MGA transfers. Most of these tools are based on systematic 
search procedures (e.g. STOUR and GASP, which will be covered in the following 
sections). Others, instead, formulate the problem as a global optimisation or as a 
global search for multiple local minima. 

1.3 Global Optimisation for Trajectory Design 

In recent times there has been a flourishing interest in methods and tools for 
preliminary mission analysis and design, ranging from low-thrust trajectory design  
[42, 43], to perturbed geocentric orbits [44], to MGA trajectories [45-47]. Also due 
to the increase of computational power available in personal computers, about 
twenty years ago, global optimisation techniques started to be extensively used 
towards the solution of complex interplanetary trajectory transfers. Methods 
including genetic algorithms [48], neurocontrollers [49], shooting [50], and 
collocation [51] have been used with varying effectiveness. As shown in [39], the 
efficiency, both computational and performance-wise, of these approaches are 
strongly linked to the type of problem that has to be solved. 

In the last decade, different forms of stochastic search methods have been 
applied to orbit design, starting from the work of Hartmann et al. [43] on the use of 
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global optimisation methods for trajectory design. They proposed the use of a multi-
objective, non-dominated sorting genetic algorithm (NSGA) to find planet-to-planet 
transfers using low thrust propulsion. Classical calculus of variations (implemented 
in the software SEPTOP) was used to compute the final mass, given an initial 
estimate of the costates (Lagrange multipliers). NSGA evolved a population of 
individuals, representing possible trajectories, whose chromosomes were encoding 
the initial values of the costates and the total time of flight. The paper presented 
some examples of Pareto-optimal trajectories from the Earth to Mars transfer, in the 
cases of close approach or rendezvous. 

In 2003, Vasile [52] proposed a stochastic global optimiser (EPIC) that was 
tested on interplanetary transfer, and later used by Vasile and De Pascale as a 
component of the interplanetary design tool IMAGO [41]. EPIC and IMAGO will 
be covered in more detail in the next Section 1.4, dedicated to the automatic design 
of MGA trajectories. 

More recently, the scientific community focused on hybridising different global 
optimisation techniques. Rosa Sentinella [53] showed that the integrated use of 
Differential Evolution (DE) [54, 55] and genetic algorithms (GA) in a multi-
population optimisation procedure can be effective. 

In 2008, Vasile et al. [56] proposed a generalisation of Differential Evolution 
and Particle Swarm Optimization (PSO) [57] in the form of discrete-time dynamical 
system. The analysis of the local convergence of the dynamical system led to the 
development of a restart procedure analogous to the one implemented in Monotonic 
Basin Hopping (MBH) [58]. The new algorithm performed better than either 
standard DE or MBH on some space trajectory optimisation problems. 

The interest towards the global optimisation of interplanetary trajectories is 
also confirmed by the initiatives of the European Space Agency on this subject. 

In 2004, a study was proposed by the ESA Advanced Concepts Team (ACT), 
to create a taxonomy on global optimisation methods for trajectory design. The 
study was performed independently by Di Lizia and Radice [39, 40], and Myatt, 
Becerra et al. [59]. Different types of interplanetary transfer were defined and 
formalised as box-constrained global optimisation problems, and classified 
according to the propulsion system (impulsive high-thrust and low-thrust), the 
dynamic model (two-body dynamics, n-body dynamics) and the number of 
planetary encounters (planet-to-planet, MGA). In particular, for the MGA case, the 
authors focused on some variants of the Cassini mission. Planetary sequences 
EMJS, EVEJS and EVVEJS were considered for transfers with powered swing-bys 
(i.e. a propelled manoeuvre is performed at the pericentre of the swing-by 
hyperbola). The morphology of the search space of each problem was studied in 
order to identify typical features which could mostly affect the global search 
(presence of multiple local minima, size of the basins of attractions, discontinuities, 
etc.), and complexity analysis of each problem was performed. Finally, the study 
put to the test eleven global optimisation algorithms, taken from three main classes: 
stochastic, deterministic and meta-model based. The optimisation problems were 
submitted to the whole set of optimisation algorithms in the attempt to match the 
heuristics implemented in each algorithm with the structural properties of each 
problem. 
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In 2005 the ACT opened a call for an international Global Trajectory 
Optimization Competition (GTOC) [60]. The competition aimed at finding, in one 
month time, the best solution to a given interplanetary optimisation problem. The 
scientific community responded with enthusiasm and participation and since then, 
four GTOCs have been organised by the winners of each edition. 

The challenge posed to the international scientific community through the 1st 
ACT Global Trajectory Optimization Competition (GTOC1) problem [60] was to 
find the best trajectory to deflect the asteroid 2001 TW229 by a direct impact. A 
proportioned use of both planetary swing-bys and low-thrust could be used to 
achieve the best impact conditions at the asteroid. Therefore, the search for the 
sequence of planetary swing-bys, together with finding a first guess of the 
trajectory, played the most important role on finding a good solution to this 
problem. 

For the solution of each of the four GTOC problems, a multitude of different 
approaches and techniques were proposed by the participants. However, all the 
methods were based on intuition and ad hoc considerations, together with the 
utilisation of a large amount of computing power. 

1.4 Automatic Design of MGA Trajectories 

The automatic design of MGA trajectories is an interesting problem from an 
operational research point of view. In fact, the number of alternative paths grows 
exponentially with the number of planetary encounters, and the number of local 
optima multiplies with the number of gravity assist manoeuvres [39, 41, 61].  

Moreover, if DSMs are inserted between two planetary encounters, the number 
of alternative paths further multiplies times the exponential of the number of DSMs. 
Thus, the systematic scan of all possible trajectories in a given range of launch dates 
becomes quickly computationally intensive even for moderately short sequences of 
gravity assist manoeuvres and short launch windows. 

The search for the best transfer trajectory can be formulated as a global 
optimisation problem, an instance of which is identified by a particular combination 
of trajectory model, sequence of planetary encounters, boundaries of the search 
space and optimality criterion. Thus, a different trajectory model would correspond 
to a different instance of the problem even for the same destination planet and 
sequence of planetary encounters. In this work it will be shown that some models 
can make the problem solvable in polynomial time while others make it NP-hard. 

In the literature on MGA trajectories, their automatic complete design (i.e. the 
definition of an optimal sequence of planetary encounters and the definition of one 
or more locally optimal trajectories for each sequence) has been approached with 
several different techniques: from deterministic approaches [20, 45], to graphical 
tools [36, 37], from stochastic approaches [62-65] to hybrid methods [41, 61, 63, 
66]. For each approach different modelling of the trajectory has been considered, 
from reduced two dimensional models [45] to three dimensional models with no 
DSMs and powered swing-bys [59] to complete three dimensional models with 
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DSMs [20, 41]. Some examples also exist of the automatic selection of the optimal 
sequence of planetary encounters [41, 67-69]. 

All of them can be classified in two main categories: two level approaches, 
integrated approaches. 

1.4.1 Two-Level Approaches 
Two-level approaches split the problem into two sub-problems which lay at 

two different levels: one sub-problem is to find a suitable set of sequences of 
planetary encounters; the other is to find at least one optimal trajectory for each 
sequence. Two-level approaches define the planetary sequence independently of the 
trajectory itself [1]. They use a simplified, low fidelity, model at the first level to 
quickly assess many, if not all, sequences and a more accurate model, at lower 
level, to optimise the trajectory. Each sequence is represented by a string of integer 
numbers, while the associated trajectory is represented with a string of mixed real 
and integer numbers defining all the characteristics of the events occurring along 
the trajectory (e.g. launch, DSM, arrival at a celestial body, number of revolutions 
around the Sun, etc.). 

The following sub-sections will focus on tools, based on the two-level 
approach, that have been developed in recent times. 

STOUR 
The software tool STOUR (Satellite Tour Design Program), example of two-level 
approach, was initially implemented at JPL for the design of the Galileo mission. 
Starting from 1990, the tool was enhanced and extended by Longuski et al. [20] at 
Purdue University, and further developed at JPL. This tool has been extensively 
used for the preliminary investigation of interplanetary trajectories to Jupiter and 
Pluto [70], for the design of the tour of Jovian moons and for Earth-Mars cycling 
trajectories. 

In its first implementation, STOUR was essentially a systematic search of 
patched conics gravity assist trajectories. The user was first selecting a launch date 
and a launch excess velocity . The interplanetary leg was a ballistic transfer 
computed with a Lambert’s problem. The user provided the number of full 
revolutions, and a range of discrete the flight times was considered. The upper and 
lower bounds of the time of flight were computed considering a multiple of the 
number of revolutions required, and of the period of the target planet. For each 
discrete value of the time of flight, and through the ephemerides, all the possible 
transfers to the next body were computed. For the following legs, which were 
departing with a swing-by, the time of encounter and the asymptotic velocity  
were given by the arrival conditions of the trajectory at the previous leg. Two legs 
were then matched at a planet with an unpowered swing-by, with what was called 
by the authors the “Vis Viva matching problem”. Basically, since the swing-by did 
not change the modulus of the 

0v

v

v

 , two interplanetary legs could be matched at the 

planetary encounter only if they had the same value of v  at the same time. In the 

case of departure, the  was set by the launch. Therefore, by varying the time of v
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flight of the legs, it was possible to find the values for which the “Vis Viva” was 
matching at a given planet. Once a match was found, the existence of a trajectory 
was determined by comparing the incoming and outgoing v  vectors. In fact, the 

angle   between the two was limited by the minimum swing-by altitude through an 
analytic relationship: if this constraint was satisfied, then a solution existed, and the 
search could continue by adding further legs to the trajectory. The systematic scan 
generated the solutions by scanning all the possible planetary sequences and time of 
flights for a given set of departure conditions. The algorithm could then be run for 
several launch dates within a launch window. 

Two main limitations of this type of approach can be identified: firstly, the 
systematic search can generate a very high number of possible trajectories to be 
explored, despite the matching constraints. Secondly, the analysis is limited to 
purely ballistic trajectories. This is not a big issue for interplanetary tours in the 
outer solar system, since the great part of the v  is provided by the launch and the 
gravity assist manoeuvres, and the DSMs have only the role of providing minor 
corrections to the trajectory. On the other hand, DSMs become quite important for 
tours of the inner solar system (towards Mercury), in which in most of the cases, 
multiple revolutions and resonant2 swing-bys are used. The same applies for a tour 
of the Jovian moons, for example. In fact, the DSM in a resonant transfer has the 
very important role of changing slightly the point in which the spacecraft re-
encounters the planet: this yields a considerable change in the relative velocity, thus 
enhancing the effect of the swing-by. 

An additional issue which affects all the approaches based on a systematic 
search based is the granularity of the search grid: basically, the grid should be thick 
enough to identify all the promising solutions (fine tuning could be achieved in a 
second step through classic optimisation), but at the same time it cannot be too 
thick, as it heavily affects the computational time. Often, deciding the granularity of 
this grid is not an easy task. 

The two limitations of STOUR were overcome by following studies and 
developments. Starting from 1993, studies by Patel and Longuski [71] and Sims et 
al. [72], lead to a new version of STOUR, that introduced the possibility of having 
three different types of  manoeuvres: powered swing-by, broken-plane and v -

leveraging. In particular, the 

v 

v -leveraging is a manoeuvre in which a DSM is 
performed near the aphelion or perihelion during the resonant orbit, such that the 
spacecraft reencounters the planet with a higher v  for the following gravity assist. 
This kind of trajectory can be used for example when launching from the Earth 
towards Venus. It is well known that Venus can be used for one or multiple swing-
bys for reaching Mercury or outer planets. Some propellant can be saved if, instead 
of launching from Earth to Venus, a resonant swing-by of the Earth is performed 
before reaching Venus, together with the appropriate DSM. The -leveraging 

manoeuvre can also be very useful to modify the 

v
v  when a number of repeated 

                                                      
2 A resonant leg is the one in which departure and arrival planets are the same. The second 
consecutive swing-by of the planet is also called resonant. 
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swing-bys of the same body are used (for example Venus). Automatic design of 
local minimum  manoeuvres between gravitating bodies were included in the 
systematic search performed by STOUR, thus not changing substantially the way 
the software operates. At the same time, the new algorithm opens up a whole new 
realm of possibilities because the inclusion of the manoeuvres creates many more 
trajectories and allows for greater flexibility in mission design [

v

71]. The inclusion 
of the  manoeuvres in the process lead to a huge number of trajectories that 
STOUR had to analyse, for each one of the possible planetary sequences. In 
addition, the total number of sequences could be also very high. This translated in 
long computational time required by STOUR. To counteract this problem, different 
methods were investigated, mainly to reduce the number of planetary sequences to 
be investigated by means of STOUR. The first method was applied to the search for 
a tour of the Galilean satellites of Jupiter for the Europa orbiter [

v

73]. It was based 
on the Tisserand plane [37]: this is an analytical plot of the period vs. perijove of 
the orbits around Jupiter coplanar with the Galilean satellites. Contours of constant 

 for each satellite, assuming circular and coplanar orbits can be drawn. Since in 
each swing-by the energy is conserved with respect to the satellite, the manoeuvre 
corresponds to a movement along one of the contours. Therefore, given an initial 
orbit of the spacecraft, it is possible to visually identify on which satellites a gravity 
assist is possible, and which is the resulting orbit (see 

v

Appendix E for details). This 
technique, which is essentially what was proposed in [36], does not take into 
account the phasing problem: in other words, it is assumed that a swing-by is 
possible whenever an orbital intersection exist. Certainly, when the full problem 
with planetary ephemeris is taken into account, the same swing-bys happen rarely 
or never. In Ref. [37], the authors also proposed to compute the minimum flight 
time for a given path in the Tisserand plane, by studying, for each leg, all the 
possible transfer arcs between the circular orbits of two satellites. This analytic 
technique, combined with the ability of the mission analyst at tracing promising 
paths on the Tisserand plane, allowed the identification of a limited number of 
planetary sequences, which could then be assessed by STOUR in a relatively short 
time. 

Another method to select promising sequences of swing-bys for STOUR is 
what Petropoulos et al. [74] proposed in 2000. The method made use of what the 
authors called gravity assist plots (GAP): essentially each plot shows the maximum 
reachable aphelion for a given sequence of planetary swing-bys in the solar system, 
as a function of the launch excess velocity from Earth. The trajectories, as in Ref. 
[37], are fully ballistic, and based on the assumption of circular and coplanar orbits 
of the planets. The phasing problem was also neglected and the planets were 
assumed to be at the required place for the swing-by. The outgoing velocity from a 
swing-by was computed assuming the maximum deflection angle. The GAP 
analysis produced a rank-ordered list of sequences that reach Jupiter. Other non-
classical sequences were obtained through variations of the standard sequences. The 
sequences were then examined over a given launch period with STOUR, leading to 
several promising trajectories. 

In 2004, Petropoulos and Longuski presented an extension of STOUR, for the 
design of low-thrust trajectories [75], named STOUR-LTGA. In STOUR-LTGA,  
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low-thrust arcs were modelled with a shape-based method [76]: a particular shape 
of the powered arc was used, such that the thrust profile could be determined (the 
authors opted for an exponential sinusoid); the parameters of the shape were then 
adjusted to fulfil the boundary conditions. This solution was not optimal but very 
fast to obtain. The choice of these parameters, for each thrust arc, was included in 
the systematic scan of the STOUR core. The approach was proven to be successful 
to quickly individuate a wide choice of preliminary solutions. The tool was applied 
to a range of test cases, in addition to be used for the GTOC1 problem [67]. 

OTHER TOOLS 
STOUR was not the only tool based on the two-level approach. A number of other 
methods were developed in the past years for space trajectory design. 

Pessina et al. [45] proposed a preliminary tool for automatic search of 
interplanetary trajectories, combining gravity assists and aero-gravity assists 
(AGA). The main idea was that, during a low-altitude swing-by, a lifting body 
performs a flight through the atmosphere of a suitable planet; exploiting the 
aerodynamic forces, it augments the total deviation angle   of the  vector, with 
respect to a manoeuvre assisted only by gravity. In addition, due to the aerodynamic 
drag that acts on the probe during the whole AGA trajectory, the modulus of the 
outgoing  is no longer the same as the incoming one, as it is for the ballistic 
manoeuvre. We will not focus on the different AGA models, as aero-gravity assists 
are not included in this thesis, but rather on the search for all possible multiple 
swing-by trajectories. The tool PAMSIT (preliminary analysis of multiple swing-
bys interplanetary trajectories) used a simplified model of the Solar System with 
circular coplanar orbits of the planets: assuming the spacecraft motion to be in the 
same plane of the planets, it looked for quasi-ballistic solutions, systematically 
spanning all the solution space. PAMSIT performed the analysis of the solution 
space at two different levels of model complexity: what was called A-type study, 
which was an energy-based feasibility study (no phasing), and a B-type study, 
where phasing of the planets was taken into account. In the A-type study, given a 
specific target, all possible permutations of intermediate planetary flybys (GAM or 
AGA) were analysed, ignoring the phasing problem. Only trajectories that remained 
hyperbolic (relative to the planet) for the whole flybys were considered. The launch 
excess velocity and all the trajectory parameters were discretised. Once determined 
the orbital parameters of one phase between two consecutive planetary encounters, 
all the possible transfers were investigated and the different times of flight were 
calculated (assuming less than one complete revolution), in a similar fashion to 
what is proposed in [

v

v

73]. Resonant transfers were also considered. For each 
different planetary sequence, among all feasible trajectories, the one with the lowest 
time of flight was saved. Despite the lack of the phasing information, the A-type 
study provided the user with a lower bound for the time of flight. Furthermore, it 
found which sequences were feasible using only energy-based considerations, thus 
reducing the computational time of the subsequent analysis, which introduced the 
phasing model, inasmuch as unfeasible solutions could be now disregarded. In the 
B-type study, the systematic approach was preserved, but the mean motion of the 
planets on the circularised coplanar orbits was introduced. By varying the launch 
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date, the position of the spacecraft at the swing-by dates was constrained to match 
the position of the planets, within predefined tolerances. A finite number of bound 
orbits could be performed before each planetary encounter. Sets of interesting 
solutions could be selected, choosing suitable merit functions made by a 
combination of time of flight and v . PAMSIT did not make use of any 
optimisation technique: it relied on a simplified model of the Solar System and 
discretisation of the parameters that allowed using a systematic search in a 
reasonable computational time. The two-level approach allowed mainly searching 
for a set of energetically feasible planetary sequences, and then introduced the 
phasing problem. Since the search in the B-type study could be much more 
demanding than the A-type, the latter allowed reducing the candidates to be 
assessed by the former. It is also interesting to note that, despite the use of planar 
orbits, together with the tolerance in the planet positions, the solutions found by 
PAMSIT could be locally re-optimised with full ephemerides, and similar solutions 
were found. 

Vasile et al. [69] also investigated low-thrust trajectories to Europa, the moon 
of Jupiter, including resonant fly-bys in the Jovian system. The optimal swing-by 
sequences and the first guess solution for the optimal control problem (which was 
solved with a direct method [77]) was found by using impulsive-manoeuvre 
reduced models of increasing complexity. They were conceptually similar to 
STOUR, and made use of a systematic search. The design of the first guess was a 
two-step process: the first step identified a large number of sequences and a 
possible interval of launch dates, using a very simple model. The second step 
computed an accurate multi-impulsive trajectory. The outcome of this second step 
was then used for the low-thrust optimisation. 

The method used at DEIMOS [68] for the GTOC1 problem made use of a 
hybrid optimisation process in order to reach optimal solutions, based on a three-
step strategy: first, a systematic scan of the global solution space, followed by a 
manual selection of the best-suited options which were finally optimised by means 
of a local low-thrust optimiser. The first step of the strategy used ballistic Lambert 
arcs and systematic scan combined with non linear programming optimisation. 
Discrete manoeuvres were included only at the arrival branch or at the departure 
branch of the swing-by hyperbolas: this last assumption allowed having only purely 
ballistic arcs, both for deep space flight and swing-by phases, as the manoeuvre was 
applied at the interface between the two phases, patching the two conic sections. 
Furthermore, the degree of freedom due to the positioning of the DSM was 
removed. Note that, although the manoeuvre does not occur at the pericentre of the 
swing-by, this model is algorithmically analogous to the powered swing-by model 
that will be presented in Section 2.3.2. The second step selected the best solutions, 
among all those obtained at the previous step, based on three criteria: best cost 
function values; low total required v ; and short mission duration. In the third and 
last step, the few selected solutions were refined by means of a local constrained 
optimiser using a direct method. Although the complete systematic scan of 
solutions, followed by the optimisation of the ballistic transfers, ensured that the 
best optimal cases are not missed in the process, the authors did not provide any 
automatic method for the selection of the planetary sequence. Within the context of 
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GTOC1, only three sequences were selected, discarding a priori a large number of 
combinations of swing-bys. Nonetheless, the three selected sequences produced 
about 47,000 solutions after the first step. 

In 2007, Olds et al. [62] investigated the relationship between the performance 
of DE, applied to the design of MGA trajectories, and its tuning parameters over a 
set of test cases. They incorporated DE in a software code called mission-direct 
trajectory optimization program (MDTOP). MDTOP implemented a trajectory 
model with powered swing-bys and ballistic interplanetary legs. DSMs were 
allowed along some (user specified) arcs. The tests were performed on several 
complex interplanetary missions: Cassini, Galileo, a sample return to comet Tempel 
1 and a round trip to Mars with orbital rendezvous. Due to the stochastic nature of 
DE, 1000 runs were performed for each test case. The analyses in the work of Olds 
et al. led to the identification of a particular tuning of DE that is optimal for the set 
of tested cases. This approach could be considered the second layer of a two-level 
approach: in fact, MDTOP assumed that the planetary sequence is given, as well as 
which legs contain a DSM. 

PRUNING THE MGA SOLUTION SPACE: GASP 
Pruning, in machine learning and global optimisation, is the technique that reduces 
the size of a decision tree (or more in general search space) by removing some 
sections of it (sometimes called branches), based on some knowledge or heuristics 
[78]. A different approach to finding solutions to the optimum MGA transfer 
problem is that of pruning the solution space, such that the residual space (the 
remaining space after pruning) contains all solutions at an arbitrary distance ε from 
the global optimum, in the criteria space. 

This type of approach can be catalogued as a two-level approach, mainly 
because it does not address the problem of the planetary sequence. This must be 
given, and the pruning is performed only on the (real valued) space of the possible 
trajectories encountering the planets. In other words, the pruning is done only on the 
continuous part of the problem. 

The most important work on this topic was done by Becerra, Myatt, et al. [61, 
79]. The authors consider a multi-impulse trajectory model, with no DSMs: the 
changes in velocity provided by the engine happen during the swing-by manoeuvres 
(powered swing-bys). A similar model (but extended with DSMs) will be explained 
in detail in Section 2.3; for the moment, it is enough to say that this model allows 
the definition of each planet-to-planet leg by means of the departure and arrival 
epochs only. Therefore, all the transfers connecting two planets in a sequence can 
be generated by a systematic scan of a two-dimensional grid, independently of all 
previous and subsequent pairs in the sequence. 

Some problem-dependent pruning criteria are used to remove, from each two-
dimensional grid, sets of departure and arrival epochs. For example, in the first arc, 
that starts with the launch, the initial excess velocity cannot be higher than what is 
provided by the launcher. Other constraints come from matching the incoming and 
outgoing velocities at a the planetary swing-by: since the swing-by is powered, a 
pair of incoming and outgoing velocities is accepted if the required corrective 
impulse is lower than a given threshold and pericentre altitude is above a minimum 
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limit. Hence, for a given pair of planets, an epoch is pruned out from the grid if no 
trajectory is arriving to or departing from the planets at that epoch (see Fig. 1.8). 

These ideas are implemented in the algorithm GASP (Gravity Assist Space 
Pruning). The residual search space can be searched using general global 
optimisation methods. The authors propose to use Differential Evolution, Particle 
Swarm Optimisation, Multiple Particle Swarm Optimisation or Genetic Algorithm 
and demonstrate the effectiveness of GASP on several test cases, among which the 
Cassini sequence EVVEJS. 

Myatt, Becerra et al. demonstrated [59] that, if the trajectory model does not 
contain DSMs and a powered swing-by model is adopted for the gravity assists, 
then an algorithm with polynomial complexity exists that can prune the solution 
space efficiently. This property is peculiar to the considered instance of the MGA 
problem, because each planet-to-planet transfer can be decoupled from the others. 

Despite this algorithm results to be extremely successful in pruning the solution 
space, there are two main limitations. 

The first one is that the propelled v ’s are allowed only during swing-by 
manoeuvres, at the pericentre of the hyperbola. The change in orbital parameters 
during a powered swing-by manoeuvre is very sensitive to the applied . Since 
the real manoeuvre is not instantaneous, and thus not confined at the pericentre of 
the hyperbola, the actual variation in orbital parameters can be quite different than 
what is predicted with the powered swing-by model. Moreover, a manoeuvre at the 
pericentre of the swing-by hyperbola poses strict requirements in terms of 
operations: the spacecraft, within the sphere of influence of the body, must be 
observed and its orbit accurately predicted and possibly corrected from the ground, 
within a short time. Also note that, if powered swing-bys are used to model 
trajectories in which the actual burn is performed in deep space, then super-optimal 
solutions are likely to be found. This will be shown in Section 

v

2.3.4. 
 

 
Fig. 1.8. Pruning of the search space using GASP. From [79]. 
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In addition, an MGA model with no DSMs does not allow the design of a 
number of interesting trajectories. The main examples of these types of transfers are 
planet-to-planet resonant swing-bys. In resonant transfers a DSM is used to change 
the relative velocity with respect to the swing-by planet, and it can be shown that a 
small manoeuvre can produce a consistent change in asymptotic velocity. There are 
other (non-resonant) cases in which transfers can only be achieved through a DSM, 
and some will be presented in this thesis (see for example Section 4.2.2). 

Finally, the introduction of DSMs offers the further advantage of providing a 
reasonable approximation of MGA trajectories with low-thrust arcs [69], thus 
allowing the generation of first guess solutions also for that kind of trajectories. The 
idea is that the change in velocity provided by the impulsive manoeuvres is spread 
along propelled arcs, when converting to low-thrust propulsion. This operation is 
usually performed solving an optimal control problem. If no DSMs are considered, 
and thus the arc is purely ballistic, the only impulsive manoeuvres are at the 
beginning and at the end of an arc. On the other hand, if one or more DSMs are 
inserted, part of the original change in velocity is taken by the DSM itself. 
Therefore, there will be at least three impulsive manoeuvres along the arc, in 
average with a smaller : this trajectory, then is more similar to a low-thrust 
solution. 

v

The second issue is connected to the first, and related to the systematic scan: as 
mentioned above, each two-dimensional sub-space is explored with a simple grid 
sampling. This approach is suitable as long as the dimensionality of the grids 
remains limited, and this is the case in GASP, due to the particular trajectory model. 
Unfortunately, if DSMs are inserted along a planet-to-planet transfer leg and an 
unpowered gravity assist manoeuvre is considered [80], the number of degrees of 
freedom increases significantly, hence the grid sampling approach becomes 
problematic due to the higher dimensionality of each sub-problem; if a coarse grid 
and an aggressive pruning are used, many optimal solutions may go lost; on the 
other hand, if a sufficiently fine grid is used, the computational time becomes 
unacceptable even for a limited number of planetary swing-bys. As it will be 
explained in the remainder of this dissertation (see Section 2.2), this is due to a 
dependency problem peculiar to this particular way of modelling MGA trajectories. 

If the problem of MGA with DSMs (MGADSM) could be pruned in 
polynomial time with a small exponent, an efficient branch and prune algorithm 
could be used as in GASP. Hence, an efficient deterministic solution process would 
have to make use of additional information (with respect to the simple ballistic 
case) to cut down the number of possible alternatives. 

REMARKS 
The main issue with two-level approaches is to assess the optimality of a given 
planetary sequence without an exhaustive search for all possible trajectories 
associated to that sequence. Unfortunately, finding an optimal trajectory is a very 
difficult global optimisation problem in itself. This, combined with the fact that 
usually there exist a very high number of sequences for a given transfer problem, 
requires a considerable computational effort. The computational cost can be 
reduced by discarding non-promising sequences. However, if the low-fidelity model 
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is not accurate enough, either some good sequences are discarded, or many of the 
retained ones can result to be not good. 

1.4.2 Integrated Approaches 
As opposed to the two-level approaches, integrated approaches define a mixed 
integer-continuous optimisation problem, which tackles both the search of the 
sequence and the optimisation of the trajectory, using a single model, at the same 
time [41]. This kind of problems is known in the literature as a hybrid optimisation 
problem [81]. 

HYBRID OPTIMISATION 
The theory of hybrid optimisation is at very early stage, but in rapid development. 
The challenges in solving these types of problems are mainly due to the intrinsic 
combinatorial complexity, in addition to the nonlinearity of the continuous, multi-
phase optimal control problem. For example, von Stryk and Glocker [82] proposed 
a branch and bound approach for mixed integer optimal control problems. They 
consider a general framework in which a binary control is added to the classic 
continuous control. Essentially the branch and bound is applied to search the entire 
discrete solution space: by partially relaxing the binary variables, the inner nodes of 
the tree define an optimal control problem, whose solution provides a lower bound 
on the performance index for all the nodes of the sub-tree. If the lower bound for a 
given sub-tree is greater than the current global upper bound, then the entire sub-
tree does not need to be searched. The authors show the effectiveness of the method 
by applying it to the solution of the Motorised Travelling Salesman Problem 
(MTSP), in which the discrete part is represented by the sequence of the cities to 
visit, while the continuous part is the control of the car driving from one city to the 
other. 

A current practice to solve hybrid optimal control problems is to use two nested 
loops: an outer loop problem solver which handles the discrete dynamics, and finds 
a solution in terms of categorical variables, and an inner loop problem solver that 
performs the optimisation of the corresponding real-valued problem. Since a 
solution of the inner problem is required for each function evaluation of the outer 
one, the outer loop has to find the optimal value of the categorical variables in 
fewer evaluations than a systematic enumeration would require. 

The automatic design of a trajectory with discrete events was recently 
formulated by Ross et al. as a Hybrid Optimal Control Problem [81]. Wall and 
Conway [83] proposed an integrated approach with hybrid optimisation, based on 
genetic algorithms, using the two-loop approach. Here the outer loop generates a 
sequence of asteroids to be visited, while the inner loop optimises the corresponding 
trajectory. For the outer loop, they used two solvers: a branch-and-bound and a GA. 
Since the authors consider a low-thrust spacecraft, in general direct methods are 
common to solve the inner loop optimal control problem, due to for their 
robustness. The authors instead decided to use again GA, applied to a shape based 
method for low thrust trajectory design. These combinations are tested on three 
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cases of increasing complexity. All of them involve the optimisation of a multiple 
asteroid rendezvous trajectory.  

In 2003, Vasile [52, 66] proposed a mixed approach to global optimisation, 
combining a deterministic branching technique and a particular implementation of 
evolution programming (EP). The former, being predictable, has the task of 
guarantee that the algorithm can find the global optimum in a predictable amount of 
time. The latter part, instead, being stochastic, cannot be proven to converge to a 
global solution within fixed time, but on the other hand it has the task of obtaining a 
lower bound information, to select promising branches and to prune non-promising 
ones. The resulting algorithm named Evolutionary Predictive Interval Computation 
(EPIC) was shown to be effective for solving some typical problems in space 
mission design. The test cases considered in that work were: a ballistic transfer 
from Earth to Mars; a low-thrust transfer between the same planets, in which the 
solution of the optimal control problem is substituted by assigning a given shape for 
the thrust control profile throughout the transfer; and finally a MGA from Earth to 
Pluto, in which two swing-by manoeuvres were inserted in the trajectory. The 
choice of the planets that offer the gravity assist was left free to be found by EPIC, 
exploiting its ability to deal with mixed integer-continuous problems. 

A MGA trajectory optimisation tool was also developed by Vasile and De 
Pascale, and named IMAGO [41] and implemented in MATLAB®. It combines a 
trajectory model with MGA and DSMs together with EPIC. The tool is tested on a 
number of cases, including a near-Earth orbit interception mission and a Rosetta-
like mission. The tool, exploiting EPIC’s ability to optimise categorical variables, is 
also applied to a MGA transfer to Jupiter, with free planetary sequence, i.e. EPIC is 
free to choose, from a selected set, which triplet of planets to use for the gravity 
assists. 

In 2009, Chilan and Conway [84] developed an approach to the automated 
planning of a sequence of impulses, thrust arcs and coast arcs for a trajectory with 
given boundary conditions. Finding the optimal sequence of events along a 
trajectory is seen as a planning and scheduling problem. The plan was encoded into 
a vector of discrete, or categorical, variables, each of which represents an event. 
Each feasible sequence of events was then associated to a cost resulting from the 
solution of a hybrid optimal control problem. The authors tackled this problem 
using two nested loops: the outer one browses through the values of the categorical 
variables, whilst the inner one solves the optimal control problem. Chilan and 
Conway proposed to use genetic algorithms for the outer loop. The possible events 
forming a plan were: coast arcs, impulses, boundary-free thrust arcs, boundary-
specified thrust arcs, Lambert arcs. A general combination of these events may lead 
to unfeasible sequences: for example, a transfer to a planet cannot end with a 
boundary-free thrust arc. By simple considerations on the nature of the events, they 
found a way to encode, using a binary vector, sequences of events of variable length 
(up to a maximum number), which are always feasible. The optimal control 
problem is transformed into an NLP problem, with a modular scheme for the 
automatic construction of the mesh depending on the scheduling of the events. Two 
methods, both based on GA, are proposed for determining the first guess that 
initialises the NLP solver. 
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Pisarevsky and Gurfil [63] proposed an application of memetic algorithms 
(MA) to the optimisation of MGA trajectories to reach Jupiter and then a highly 
inclined orbit. MAs combine a population-based search with separate individual 
learning, i.e., local refinement operators. The authors designed optimal MGA 
trajectories to reach Jupiter with high relative velocity, low v  and transfer time. 
No particular method for selecting sequences is presented. Local search was then 
applied to most promising solutions to solve the swing-by at Jupiter and finally 
achieve the high inclination orbit. 

REMARKS 
The main difficulty with integrated approaches is that a variation of even a single 
celestial body in the sequence corresponds to a substantially different set of 
trajectories. Therefore, if the solution of the hybrid optimisation problem is 
represented with a single vector, a variation even of a single integer number in the 
sequence corresponds to a substantially different set of trajectories. Furthermore, a 
variation of the length of the sequence implies varying the number of legs of the 
trajectory, and thus the total length of the solution vector. 

1.5 Study Objectives 

Finding the global optimum to a generic MGA optimisation problem is a 
challenging problem. As mentioned before, the problem is even more complex if 
DSMs are considered. The objective of this study is to investigate new methods for 
the automatic design of MGA trajectories with DSMs. These new methods should 
lead to tools that work with minimum experience and intervention of the mission 
analyst. 

Both a two-level approach and an integrated approach will be covered in this 
thesis. 

1.5.1 Incremental Pruning 
First, a two-level approach for MGA trajectory design including DSMs will be 

investigated. The primary objective is to extend the results obtained with GASP 
[59, 79]. Different models for MGA trajectories with impulsive DSMs will be 
defined and it will be shown that each model leads to an algorithm with a different 
level of complexity. 

The idea developed in this thesis is that, no matter the model, the MGA global 
optimisation problem can be decomposed into simpler sub-problems (of smaller 
complexity and size), and approached incrementally, adding one planet at the time 
to the trajectory. At each incremental step, a portion of the search space can be 
pruned out. In fact, starting from the departure planet and flying to the first swing-
by planet, only a limited set of transfers are feasible, and the rest of the search space 
can be pruned out, according to a number of criteria. The process iterates adding the 
second planet in the MGA sequence, and continues until the final planet is reached. 
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The main part of the work will assess how to effectively and efficiently prune 
the solution space in case DSMs are included in the trajectory description. A first 
result will be the definition of a set of efficient pruning techniques for this specific 
problem. The proposed pruning techniques allow a fast solution of problems with a 
number of gravity assists and DSMs. 

It will be shown that, because of the increased dimensionality introduced by 
DSMs, grid search ceases to be efficient and can be replaced with non-exhaustive 
heuristics. The heuristics developed in this thesis aim at finding the set of solutions 
fulfilling the pruning criteria for each sub-problem. 

Appropriate pruning criteria will be developed, such that not only will the 
incremental approach find the minimum- v  transfers, but also take into account 
other mission requirements. 

The effectiveness of the pruning techniques will be demonstrated on a 
benchmark of realistic mission design problems. It will be shown that the 
exploration of the residual space (i.e. the non-pruned space) provides better quality 
results, in less computation time, than the solution of the problem as a whole. 

The search space reduction obtained with the developed pruning techniques 
allows a reliable identification of: launch windows, mission options over a wide 
range of launch dates, mission cost in terms of v  and epoch of the manoeuvres for 
a given sequence. 

Finally, the tool will be proven to be able to work on a wide variety of MGA 
transfer problems: from interplanetary trajectories (possibly including resonant 
legs), to a tour of the Jovian moons, to sequences of resonant swing-bys to change 
the orbital parameters. Test cases include the design of trajectories for the 
BepiColombo and Laplace missions. 

PLANETARY SEQUENCE GENERATION 
Like all the two-level approaches, the generation of the planetary sequence is 
performed independently and in advance, by means of a reduced trajectory model. 
Therefore, an additional tool is necessary for finding a set of planetary sequences to 
be investigated with the incremental pruning approach. The idea is to have a 
conservative approach: it is preferred to have a higher number of candidate 
sequences, rather than have few or just one, with the risk of eliminating good ones. 

The generation of candidate sequences starts from a list of available planets to 
swing-by. All the possible sequences are examined incrementally, starting from 
direct transfer, adding one and eventually more swing-bys. The list is pruned out 
first by considering some constraints, like the maximum number of swing-bys and 
the maximum number of resonant swing-bys. Then, their feasibility is assessed by 
means of a simplified model, based on energetic considerations, in a similar flavour 
to what proposed by Petropoulos at al. [74]. Unfortunately, due to the choice of 
having maximum deflection at each swing-by, this framework does not provide any 
estimation of the relative velocity v  at the final planetary encounter. The value of 

the  can be quite important while trading off different solutions: in fact, it could 
be used to rank all the feasible sequences, and select the most promising ones, for 
the subsequent optimisation. 

v
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Therefore, the approach will be extended to take into account requirements on 
the arrival velocity with respect to the planet ( v ). In most transfers, the  has to 
be minimised, in order to favour an orbit insertion around the target planet with low 

. In some other cases, instead, a specified value of relative velocity needs to be 
achieved, as it is required by the following part of the mission. 

v

v

1.5.2 Ant System Trajectory Planning 
The objective of this part of the research is to develop an approach to the automated 
planning and scheduling of MGA trajectories. 

In the literature, planning is the problem of defining a sequence of activities (or 
actions, or events) to reach a goal. Scheduling is the one of finding the best 
temporal allocation of those activities. A feasible and optimal solution satisfies a set 
of constraints and minimises a given objective function. 

An MGA trajectory can be seen as a scheduled sequence of events (e.g. launch, 
deep space flight, DSM, swing-by, planetary capture) characterised by a set of 
integer variables, identifying the type of event, and a set of real variables, 
identifying the time and characteristics of the event. From this point of view, the 
definition of an MGA trajectory becomes planning and scheduling the events and 
its optimal design translates into the solution of an optimal planning and scheduling 
problem. 

Since planets are moving and can be revisited (e.g. in resonant swing-bys), the 
MGA planning problem can be seen as a variant of the dynamic vehicle routing 
problem [85] in which each node of the network can be revisited, the customers are 
moving and the cost of each leg of the itinerary depends on the route followed by 
the vehicle up to that leg. Similar to other NP-hard problems, the number of 
possible paths, for an MGA transfer, grows exponentially with the number of 
planetary encounters. 

Here, the automated MGA trajectory planning problem will be tackled with an 
integrated approach in which the trajectory model is an integral part of the solution 
process. In particular, the model contains a scheduler that transforms a trajectory, 
with the associated mixed integer-continuous variables, into a finite space of 
scheduled discrete events: the plan space. 

An Ant System (AS, [86]) algorithm is then used to look for optimal plans. The 
main idea is to dispatch a group of virtual ants into the plan space. Each ant will 
choose to follow a particular plan (or path in the plan space) according to a 
probability distribution. The probability associated to a particular plan is 
proportional to the quality of the corresponding set of previously explored MGA 
trajectories. This process is analogous to the deposition of the pheromone in 
standard Ant Colony Optimization (ACO, [87]). The next sub-section is a literature 
review of works that used ACO to solve planning and scheduling problems or 
routing problems. However, unlike in standard routing problems, here the nodes are 
moving and the cost of the transfer from one node to another depends on the 
previous history of allocated actions. Therefore, it is possible to associate a 
pheromone level to a complete path but not to a portion of it. 
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In order to solve this dependency problem, the proposed algorithm does not use 
standard pheromone deposition and evaporation heuristics but employs taboo lists, 
to guide the decision of the ants at each planet (or node). An external archive 
maintains a list of complete plans, the feasible list, and is used to build a statistical 
model of the feasible set within the search space. Dual to the feasible list, the taboo 
lists are a surrogate representation of all the infeasible choices (i.e. choices that do 
not lead to completing a plan). In this way, the ants avoid the re-exploration of 
paths that resulted to be infeasible, and direct the search towards other more 
promising areas of the plan space. 

The effectiveness of this approach will be proven through the solution of a 
number of relevant MGA trajectory design problems: an Earth to Mercury transfer, 
similar to the one of the BepiColombo mission, and an Earth to Saturn transfer, 
inspired to the Cassini mission. 

1.5.3 Planning and Scheduling with ACO 
In this thesis, it is proposed to solve the path planning problem, associated to the 
design of MGA trajectories, with a modified Ant Colony Optimization (ACO) [87] 
algorithm. ACO was originally created to solve the travelling salesman problem 
(TSP) [86], and later successfully applied to a number of other discrete optimisation 
problems. 

In the literature, some ACO-derived meta-heuristics exist for the specific 
solution of different scheduling problems. 

For example, the resource-constrained project scheduling problem (RCPSP), 
aims at finding the optimal sequence of scheduled activities of a project, such that 
the time difference between the start and finish of the schedule is minimized. 
Constraints are posed on the ordering of the activities and on the resource 
requirements per time unit. Merkle et al. [88] proposed to apply ACO to decide 
which activity, from the set of eligible ones, should be scheduled next. Both 
pheromone information and heuristics were used for selecting the activities. 

The open shop scheduling (OSS) problem was also tackled through ACO. A set 
of machines have to perform a given number of operations taken from a set. A 
machine can perform only certain operations. Jobs are sets of operations which 
define additional constraints, as operations in the same job have to be performed 
sequentially. A solution of the problem is defined by the sequences of operations on 
each machine. Each operation has a given processing time, and the objective of the 
problem is usually to minimise the makespan, while satisfying the constraints. Blum 
in his work [89] suggested to hybridise Ant Colony Optimisation with Beam Search 
(BS) for solving the OSS. The idea came by considering that a scheduling problem 
can be seen as a search in a tree, and thus algorithms specifically developed for this 
purpose can be used. Beam Search is a (usually deterministic) technique to 
construct several candidate solutions in parallel, and it uses a lower bound in order 
to guide the search; in contrast, ACO algorithms explore the search space 
probabilistically, using past experience through pheromone. Expecting a benefit 
from combining the two, Blum used the ACO as a basic framework, but replaced 
the solution construction mechanism by a probabilistic BS. 
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Recently, some authors have also hybridised Ant Systems (AS) with taboo 
search for applications such as the Job-Shop Scheduling problems [90, 91] or the 
data clustering problem [92]. The algorithms proposed in the literature use taboo 
search to improve locally the solutions or to avoid re-visiting nodes in a tree. The 
modified ACO algorithm in this paper, instead, employs taboo lists to discriminate 
between feasible and infeasible paths. In fact, because of the dependency problem, 
at every node, feasible and infeasible directions are undistinguishable without the 
memory of the past moves of the ants. 

1.6 Document Structure 

This thesis is organised as follows. Chapter 2 will describe two different MGA 
trajectory models including impulsive DSMs. One model makes use of non-
powered swing-bys and one DSM per interplanetary leg, while the second can have 
multiple DSMs per leg and makes use of powered swing-bys. The chapter contains 
an analysis of the influence of each model on the complexity of the solution 
algorithm. 

In Chapter 3, the two-level approach will be presented. The chapter is mainly 
focused on the development of the incremental pruning technique but contains also 
a description of the method to generate sequences of gravity assists. At the end of 
the chapter, some comparative tests between the pruning approach and other global 
optimisation methods (both deterministic and stochastic) will be presented. 

Chapter 4 will show the application of the proposed sequence generator and 
incremental pruning techniques to real mission test cases. This chapter will also 
include extended analyses of the results, including an investigation of the different 
families of solutions that the incremental approach is able to find.  

The novel integrated approach based on ACO will be described in Chapter 5. 
This chapter will include the particular trajectory model specially developed for this 
approach, the search technique, the application to different interplanetary transfer 
problems and a comparison with other stochastic methods. 

This thesis ends on Chapter 6 with some final remarks and suggestions for 
future investigations. 

There are five appendices in this thesis. Appendix A describes some code 
implementation details. Appendix B shows a trajectory composition approach based 
on the definition of basic building blocks. This approach allows assembling 
trajectories that combine building blocks taken from the two models, low-thrust 
arcs and any other type of event. Appendix C presents a transformation of the 
search space that allows to transform a set of disconnected or overlapping boxes 
into the unitary hyper-cube. Two test cases are also presented. Appendix D presents 
a testing procedure for global optimisation algorithms. Finally, Appendix E gives an 
overview of the Tisserand plane. 
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MGA TRAJECTORY MODELS 

This chapter introduces two different patched-conics MGA trajectory models: the 
velocity formulation and the position formulation. The former describes each 
segment of the trajectory starting from its initial velocity, uses an unpowered swing-
by and allows one DSM per leg. The latter describes each segment through the 
position at the bounds, uses a powered swing-by and more DSMs per leg. It will be 
shown how each model affects the complexity of the MGA design problem. 

2.1 The Patched-Conic Approximation 

Throughout this work, the trajectories will be modelled using the patched-conic 
approximation [93]. The fundamental assumption underneath this approximation is 
that the motion of a point, with negligible mass, subject to the gravitational action 
of multiple bodies, can be described as the union of a number of individual conic 
arcs along which only one gravitational action is active and the others are null. Each 
conic arc is the closed form solution of the Newton’s law of universal gravitation: 

 
2

ˆ
r


 r r . (2.1) 

with  the position vector of the point mass with respect to the active gravitational 
body, whose gravitational constant is 

r
 , and ˆ rr r . The dot  denotes 

differentiation with respect to time. Eq. 


(2.1) implicitly assumes that any other force 

(e.g. solar pressure) is negligible. The motion following Eq. (2.1) is called 
Keplerian, and it can be shown that the trajectory is a conic section. 

This assumption applies well to the case of MGA trajectories. A spacecraft 
moves in the deep space under the attraction of the main attractor (the Sun, for 
trajectories in the Solar System), and performs a swing-by every time it enters the 
sphere of influence of a gravitational body. The sphere of influence (or Hill’s 
sphere) is defined as the region around a planet within which the gravitational 
attraction of the planet is prevailing with respect to those of all the other bodies. 

29 
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Therefore, inside the sphere of influence, the motion can be approximated by 
considering the gravity of the planet only. Note that, in order for the patched-conic 
assumption to hold true, the transition through the Hill’s sphere should be fast 
enough to be approximated with a hyperbolic arc. 

A limit case of the patched-conic framework is obtained considering that the 
spheres of influence of the bodies have infinitesimal radius and the swing-by is 
instantaneous. In fact, this approximation is not far from the reality, when 
considering planetary systems (like the Solar System) in which the mass of the main 
attractor is several orders of magnitude bigger than the masses of the other bodies. 
In this approximation, the sphere of influence each body degenerates into a point, 
therefore the spacecraft actually targets the planet by matching its position at a 
given time. This also implies that the point in which the spacecraft enters the sphere 
of influence of the body is not defined: this leaves an additional degree of freedom 
to be fixed in the swing-by phase, as it will be shown later. This limit case of the 
patched-conic approximation is sometimes referred to as linked conics. 

Following this approximation, the complete MGA trajectory can be 
decomposed in different parts. 

An interplanetary leg1 connects one celestial body to the next one. Each 
interplanetary leg is made of one or several arcs, in which the spacecraft moves 
under the attraction of the main attractor (the Sun in the solar system, for example) 
and possibly additional forces due to perturbations or its own thrust. 

Arcs are characterised by having a non-null duration, as opposed to 
instantaneous events, that connect two arcs matching the spacecraft state before and 
after according to certain rules. Instantaneous events can happen at planets, like 
launch, swing-by or capture, or in deep space, like a DSM. 

In the remainder of this section, the various parts composing an MGA 
trajectory are presented in detail.  

2.1.1 Arcs 
An arc is a non-instantaneous part of a leg along which the states of the spacecraft 
(position and velocity) are continuous functions of time. Arcs can be further 
classified in two categories: coast arcs and low-thrust arcs.  

In general, along a coast arc, a spacecraft is subject only to natural forces, e.g. 
gravity, solar pressure, etc., and not to any control action coming from the use of a 
propulsion system. In the remainder of this thesis, a coast arc is further restricted 
only to purely Keplerian motion, i.e. the spacecraft is subject to the attraction of one 
single gravitational body and no other forces are influencing its dynamics. In this 
case, therefore, a coast arc is always a part of a conic section. 

Along a low-thrust arc, instead, a spacecraft is subject to a controllable low-
thrust action coming from the use of a propulsion system. If other natural forces are 
acting on the spacecraft along a coast arc, the coast arc is called a perturbed coast 

                                                      
1 We will refer to interplanetary legs, with some abuse of terminology, not only for Sun-
centred trajectories, but also for planet-centred trajectories. In the latter case, the bodies are 
the moons of the planet. 
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arc, and the additional forces are called perturbations.  Of course it is possible to 
have a perturbed low-thrust arc, in which there is both thrust and perturbations. 

The classification of the arcs used so far takes into account the dynamics along 
the arc itself, according to the forces acting on the spacecraft. There is another way 
of classifying the arcs, which is interesting for the purposes of this work, and it 
considers the way an arc is computed. 

A coast arc can be computed mainly in two ways: by propagation or by solving 
a Lambert’s problem, as it will be explained in the following two sub-sections. 

PROPAGATION 
Propagation refers to finding the state of the spacecraft at a given time, by solving 
the equations of motions, given the initial states (position and velocity) of the 
spacecraft at some earlier initial time. If the propagation applies to the coast arc, 
then the two-body equations of motion are integrated. The idea of propagation can 
be applied to any other type of arc, provided that the equations of motions and the 
external forces (controls and perturbations) are known. 

The propagation can be done in several different ways. Since the equations of 
motion are a set of differential equations, in general it is possible to integrate this 
system numerically. For the very special case of non-perturbed Keplerian orbit, 
analytic solutions exist to find the final states after a given amount of time. Usually 
these formulations do not require any numerical integration, but only finding the 
root of a non-linear function. Due to the existence of ways to find good 
approximations of it, few iterations of a Newton-Raphson loop are usually 
sufficient to solve the problem. 

The analytic solution to the equations of motion offers increased precision in 
the final states and reduced computational time with respect to the numeric 
propagation (Fig. 2.1). For this work, an analytic propagation [94] based on 
universal variables [95] was used: universal variables have the additional advantage 
that can be used for elliptic, parabolic and hyperbolic orbits with no modification. 

 

LAMBERT ARC 
A Lambert arc is a coast arc which is obtained by solving a Lambert’s problem 
[95]. The Lambert’s problem is the problem of finding the orbital parameters of a 
conic arc connecting two points  in space in a given time 1 2,r r t  and number of 
full revolutions (see Fig. 2.2). Once the orbital parameters have been determined, 
we are usually interested in finding the velocity vectors  at the boundaries of 
the arc. This work makes use of a multi-revolution Lambert solver [

1 2,v v
96] 

implemented in C. 
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 (a) Elliptic orbits (b) Hyperbolic orbits 

Fig. 2.1. Propagation time for 100 random initial states for elliptic orbits (a) and 
hyperbolic orbits (b). The three colours refer to numerical propagation 
(MATLAB® ode45), analytic propagation with time equation (Analytic 1) 
and with universal variables (Analytic 2). All codes implemented in 
MATLAB®, running on Pentium 3 GHz. 

 

 
Fig. 2.2. Lambert’s problem. 

2.1.2 Instantaneous Events 
Two arcs can be connected one after the other: in this case, the state of the 
spacecraft must be continuous across the interface. The typical example is when the 
spacecraft is coasting in deep space and, at some point, it switches on its ion engine. 
This situation can be modelled by a coast arc followed by a low-thrust arc. 
Although there is a discontinuity in the forces applied to the spacecraft, its velocity 
and position are continuous. 

It is obvious that the position of the spacecraft as a function of time must be 
continuous along the trajectory. This is in theory the case for the velocity, as well. 
There are some events, though, that can change the velocity of the spacecraft 
considerably, in a relatively short time. These events are, for example, swing-bys, 
manoeuvres with a chemical, high-thrust engine, launch, rendezvous, orbit injection 
and so on. A common approximation, then, is to consider these events as 
instantaneous. Thus, instantaneous events change the velocity of the spacecraft in 
no time without affecting its position. 

1r
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Instantaneous events are used to connect two consecutive arcs, which do not 
have the same velocity at the matching interface. 

The following instantaneous events will be considered: deep space 
manoeuvres, which occur in deep space, and require a thrust, and swing-bys, which 
exploit the gravity of a body. 

DEEP SPACE MANOEUVRE 
A deep space manoeuvre (DSM) is a change in the velocity vector of the spacecraft 
obtained by switching on the spacecraft engine. If the thrust is high enough, then a 
short time is sufficient to produce the necessary change in velocity. Thus, a DSM 
can be modelled as an instantaneous change in velocity, or v : 

 2 1  v v v , 

where  are the heliocentric velocity vectors before and after the manoeuvre 

respectively, and the modulus of the velocity change is 
1 2,v v

2 1v  v v . This latter 

value is very important, as is directly related with the propellant needed to perform 
the manoeuvre. In particular, from the well-known Tsiolkovsky rocket equation 
[97]: 

 2 1
ev vm m e  

where  is the mass of the spacecraft before the manoeuvre,  is its mass after 

the manoeuvre, and  is the exhaust velocity of the propellant mass. Therefore, 

minimising the change in velocity, or 

1m 2m

ev

v , is equivalent to minimising the 
propellant consumption of the spacecraft. 

SWING-BY 
A swing-by, also called gravity assist or hyperbolic passage, connects two 
consecutive interplanetary legs of the trajectory, matching at a given planet [93]. 
This means that the final point of the first leg coincides with the initial point of the 
second leg, and both points coincide with the planet position at that time. In fact, 
the swing-by is also considered to be instantaneous within the interplanetary 
trajectory, so that the final time of the incoming leg coincides with the initial time 
of the outgoing leg. Therefore, the position of the planet does not change during the 
swing-by. 

From the point of view of the interplanetary trajectory, the planet is a point, 
identified by the centre of mass of the planet itself. During the manoeuvre, 
gravitational attraction of the main attractor is neglected, and the spacecraft is 
assumed to be subject to the gravity field of the planet only. Two different types of 
swing-by models will be presented in the following: an unpowered swing-by, in 
which no manoeuvre is performed, and a powered swing-by. As it will be 
demonstrated in this study, each one of the two models has substantial implications 
both from a computational and operational point of view. 
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2.1.3 Ephemerides 
The positions of the planets, and the other celestial bodies orbiting in a given 
planetary system, are usually given by the ephemerides. Practically, the 
ephemerides can be though of as a function which provides position and velocity of 
a body (or alternatively the Keplerian parameters of the osculating orbit) at a given 
instant of time, of the type: 

    , Ephemerides ,b tr v  (2.2) 

where b is the identifier of the body, in a given reference frame, and t is the epoch. 
The function (2.2) should be defined not only for all the bodies of interest, but also 
for the whole timespan of the mission. 

Since the ephemerides are tables based on real observations, interpolation 
methods are usually used internally to determine the function at times between 
observations, and extrapolation is used to determine the function at future times, 
where observations are still not available. This approach is adopted by the widely 
used JPL NAIF-SPICE ephemerides [98]. Another approach is possible, instead: an 
approximation of the orbital parameters can be analytically described in time as 
polynomials. The evaluation of a polynomial at a given time is many times faster 
than any interpolation, therefore this second approach provides a computationally 
cheap version of the ephemerides, at the cost of the precision of the body data. Fig. 
2.3 shows the difference for the three components of position and velocity for the 
Earth, between the JPL ephemerides and the adopted analytical ones. For 
preliminary mission design, the differences are very small and do not affect the 
results in any way. Fig. 2.4 on the other hand shows that the analytic ephemeris are 
more than three times faster than the JPL ones. 
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Fig. 2.3. Difference in position (a) and velocity (b) between the analytic 
ephemerides and JPL NAIF-SPICE “de405” kernel. The body is the Earth, 
and the range of dates spans from June 2005 to September 2013. 
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Fig. 2.4. Time for 10,000 calls of SPICE and analytic ephemerides (“EphSS”). The 

analytic ephemerides are more than 3 times faster. 
 
For this work, the analytic ephemerides were used for the comparative test 

cases presented in Chapter 3. JPL SPICE ephemerides were used instead for the 
applicative test cases in Chapter 4, as these ephemerides were in use at ESA-ESOC, 
and thus the necessity to use exactly the same data, for the sake of comparing the 
results. 

2.2 Velocity Formulation 

This section and the following one present two complete, linked-conic, MGA 
trajectory models with DSMs. 

The first model, named velocity formulation, composes a trajectory with a 
sequence of conic arcs linked together in position, assigning a value to the velocity 
vector at the beginning of each arc. The corresponding position vector is computed 
as the end point of the propagation of the previous arc, except for the first one. Each 
arc is propagated forward in time, therefore the position and velocity at the 
beginning of each arc depend on the previous ones and the whole sequence has to 
be computed in a strict temporal order. 

Here a particular instance of the velocity formulation will be presented. The 
transfer leg from one celestial body to another phase is composed of a propagated 
arc, followed by a Lambert arc. The two arcs are connected by a DSM. A non-
powered swing-by is used at each celestial body to connect the incoming leg to the 
outgoing leg. 

2.2.1 Interplanetary Leg 

Let us consider the generic interplanetary leg in Fig. 2.5, connecting planet  to 

planet . The time of flight T of each leg is a parameter of the model, thus it is 

considered as known. The time  at planet  is also a parameter, or can easily be 
computed by summing all the previous times of flight to the departure time. Then, 
the time at  is . 

1P

2P

1t 1P

2P 2 1t t T 
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Fig. 2.5. A representation of a leg in the velocity formulation. 

 
We also assume, and this is distinctive of the velocity formulation, that the 

initial velocity vector  is known. If the considered leg is not the first one in the 
trajectory, then the initial velocity is the outcome of the preceding swing-by. If 
instead it is the first leg, then the initial velocity can be either provided, or 
computed as the result of a launch. 

1v

Since the time at planet  is known, its position is evaluated through the 
ephemeris. The position at the beginning of the leg coincides with the position of 

, and the full state of the spacecraft (position and velocity) is known just after 

leaving . 

1P

1P

1P
A propagated arc can be computed with these initial conditions, for a given 

amount of time. The propagation brings the spacecraft to the position M and time 

Mt  of the DSM. This time is defined as the fraction   of the time of flight T, i.e. 

1t t TM   , therefore: 

 1Mt t

T
 
 , 

and the time of the propagation is T . 
Note that in the velocity formulation, the position of the DSM is not explicitly 

defined through a set of parameters in the solution vector (as it happens for the 
position formulation, discussed in Section 2.3.1): on the contrary, it is the final 
point of the propagation [41]. 

The propagation provides the final state of the spacecraft at time Mt , before the 

DSM, namely position Mr  and velocity M
v , where the superscript (-) denotes the 

fact that the velocity is before the DSM. 
The second arc connects the point Mr  at Mt  to the position of planet  at time 

with a Lambert arc. The duration of the arc is 
2P

2t  1T  , and the solution of the 

associated Lambert problem gives the velocity vectors at its boundaries, i.e. M
v  

1P  

DSM 

M

2P  

1v  

M
v

M
v

2v

Lambert 
arc 

Propagation 
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and  respectively. The DSM magnitude, which represents the cost of the leg, is 
puted as 

 2v
then com

M Mv    v v .  

The velocity 2v , instead, becomes the incoming velocity to the swing-by at the 
end of the transfer arc, if existing, or simply the final velocity of the traje tor

If the initial time and state of the spacecraft are given or computed as the 
c y. 

erplanetary leg in the velocity formulation 
ght T and the timing of the DSM 

outcome of previous events, the int
requires two parameters: the time of fli  . 

2.2.2 Unpowered Swing-by 
In the velocit formulation, the unpowered swing-by model [y  m93] is used to atch 
two consecutive legs at a planet. We consider the spacecraft to have the same 
position of planet P. The gravity constant of the planet and its mean radius are 
respectively P  and PR . Let v  be the ve  of the spacecraft, and v  the locity

 tric reference frame, the space t is 
pp hing e planet from great distance (

P

crafvelocity
roac

of the planet. In a planetocen
 th r  a ) with a velocity, rela  

plan
tive to the

et itself, given by: 

 P
 
  v v v  

Since the spacecraft approaches fro finity, the orbit is hyperbolic, hence the 
name of hyperbolic passage. We would like to find the outgoing velocity at the end 
of the swing-by v . 

m in

For a hyperbola, the eccentricity , and the semimajor axis a is negative. 
y he energy equation at infinity we note that: 



 1e 
B using t

 
   2 2

2

2 2
P P

v vv
E

r 2 2a

 
 
        (2.3) 

Then, the magnitude of the asymptotic vel
inb

ocity must be the same for both the 
ound and outbound legs of the hyperbola: 

 v v v 
     (2.4) 

Thus, the first important result is that the modulus of the velocity relative to the 
planet, befo  and after the sw g-by, remains unchanged. The swing-by can only 
chan

re in
then is to determine, as 

a fu
ge the direction of the relative velocity vector. Our task 

nction of some swing-by parameter, the deflection angle  , that is defining the 
 with respect to 

v 
v . rotation of 

We can consider the polar equation of the conic section 

 
 21

1 cos

a
r

e

e 




 (2.5) 
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at , where r    , which leads to 

  
 211 1

cos lim 1
r

a e

e r
 

  
  

e
   

    
 

or 

1
 arccos e

   
 

. (2.6) 

rom the geometry in Fig. 2.6, we note that 

 

F

2 2

     (2.7) 

 

 
swing-by. 

ombining Eqs. (2.6) and (2.7) yields 

 

v


v

pr






a



Fig. 2.6. Geometry of the unpowered 
 
C

1
sin

2e


 . 

From the energy equation (2.3), the semimajor axis of the passage is 

 
2

a
v

P



  . (2.8) 

The angular y, giving momentum can also be computed at infinit



2.2 Velocity Formulation 39 
 

  
2

2
2

1Pv e
v






    (2.9) 

where   is the distance betwe n the planet and the asymptotes. This value can also 
be seen as the radial distance on the so called B-plane, i.e. the plane centred in the 
planet and perpendicular to 

e


v . The transversal coordinate is given by the rotation 

of the hyperbola plane itself.   is very important during the operations phase, as it 
tells at which distance the spacecraft should target the planet, in ord to achieve the 

red eccentricity of the hyperbola. In the mission design phase, especially when 
using the patched-conic approach, 

er 
desi

  is not the ideal parameter to characterise the 
swing-by, as it is not straightforward to determine its bounds. 

A better choice is the radius of the pericentre of the hyperbola pr . This value is 

often also called distance of closest approach, as it represents the closest distance 
the spacecr  gets to the centre of mass of the planeaft t. 

aller than
r the spacecraft will crash on the surface. If

the p

It is clear that if we choose pr  

as a design variable, its value cannot be sm  the radius of the planet itself, 
o  we normalise pr  using the radius of 

lanet PR , we have that, for all the swing-bys, 

 1p Pr R . (2.10) 

This represents a bound constraint for a design variable of the swing-by. Very 
n a value higher than 1 is chosen for this constraint, depending on the presence 

of the atmosphere, the targeting precision, and th
ofte

e safety margin. So minimum 
values ranging from 1.05 to 1.1 radii are common. 

To relate the eccentricity of the hyperbola with

(2.5) at periapsis, and we combine it with Eq. (2.8): 

 pr , we solve the polar equation 

 
2

1 1p p

P

r v r
e

a
    . (2.11) 

We have shown that during the swing-by the spacecraft follows a hyperbola, 
therefore the entire swing-by is planar. The hyperbola lies on the plane containing 
the incoming relative velocity vector and the centre of mass of the planet. This 
plane, though, has not been defined yet. In  fact, despite the direction of  is given, 

and 
v

the distance   is a function of pr  through Eqs. (2.9) and (2.11), the transversal 

coordinate on the B-plane, is still undetermined. This angle defines the attitude of 
the swing-by hyperbola plane around the 

v  vector  (see Fig. 2.7 (a)). 
his degree of freedom is due to the linkedT -conic approximation: basically in 

the heliocentric reference frame, we consider that the sphere of influence of the 
planet has null radius: so the spacecraft matches the planet, but the point where it 
pierces the sphere of influence is undetermined. 

 

 



40 MGA TRAJECTORY MODELS 2. 
 

B-plane 


v



  

n

Reference 



  

 (a) Hyperbola plane (b) Geometry to compute γ 

Fig. 2.7. Definition of the angle γ. (a) Shows the hyperbola plane, the B-plane and 
the angle γ with respect to an arbitrary reference; (b) Shows the geometry 
to compute γ. 

 
To determine the plane attitude, we can provide the value of an angle   as an 

additional parameter of the swing-by, with respect to a given reference direction 
within the B-plane, which has to be defined. Several possible choices exist for the 
definition of   and the reference direction.  

In this work, the attitude of the swing-by plane   is defined by the unit vector 
 perpendicular to the plane itself. With reference to n Fig. 2.7 (b), the angle   is 

the counter-clockwise angle between n  and , which is a unit vector 

perpendicular to  and the heliocentric velocity of the planet . 
rn


v Pv

Given the incoming relative velocity vector 
v  and the heliocentric velocity of 

the planet , the procedure for defining the vector Pv n  is the following: 

 Define vector rn , which is perpendicular to Pv  and 
v , i.e.: 

 P
r

P










v v

n
v v

; (2.12) 

 Rotate the vector rn  around vector 
v  of the angle  , thus finding the 

vector n . 

Thus,  is found by rotating 
v 

v  of the deflection angle   around the axis 

, once n   as a function of the parameter  has been found through Eq. pr (2.11). 

It shall be noted that the definition of  (and so rn  ) become singular if 

, due to Eq. P

v v (2.12). Therefore this model cannot be used in such a condition. 

Once  has been calculated, the heliocentric velocity of the spacecraft can be 
computed simply by 


v

 P
 

 v v v . 

n


v




v  


 

rn
Pv
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 (a) Passage in front of the planet (b) Passage behind the planet 

Fig. 2.8. Two examples of heliocentric velocity change due to the swing-by in Fig. 
2.6. Both cases refer to a planar case, but in (a) the spacecraft passes in 
front of the planet, resulting in a heliocentric deceleration, while in (b) it 
passes behind the planet, thus accelerating. 

 
Although the swing-by does not change the magnitude of the relative velocity 

vector, there might be a significant difference in absolute velocity. This difference 
can be noted by considering the velocity diagrams in Fig. 2.8, referred to a planar 
case (i.e. all the velocity vectors lie in the same plane) for simplicity of 
representation. In Fig. 2.8 (a), the choice of     is such that the spacecraft passes 
in front of the planet, resulting in a deceleration of its heliocentric velocity. The 
passage in Fig. 2.8 (b), instead, was obtained with an attitude angle     : the 
spacecraft passes behind the planet, and the result is an acceleration in the 
heliocentric reference frame. In both cases, there is a change of the heliocentric 
energy of the spacecraft. This change is the reason for including one or more 
gravity assists when planning interplanetary missions. 

There are different ways of defining the attitude of the plane of the swing-by in 
literature; for example, Izzo [99] proposes to use the angle   defined through 

   1 2cos sin sin cos sinv     
   v b b 3b

and 

 
1

2 1

3 2 1

P P

v

r


 

 
 

b v

b b r

b b b

 

where  is the heliocentric position vector of the planet. Nevertheless, even this 

definition presents a singularity, when . It is also possible to show that, if the 
two definitions of the swing-by plane angle are used within an optimisation of a 
MGA trajectory, the complexity of the search space is the same. 

Pr

P

v r

We would like to compare the structure of the solution space of a simple but 
significant MGA transfer problem. The transfer will start with given initial 
conditions at Venus: after a swing-by of Venus, a deep space flight leg will reach 
the Earth. The trajectory is coded using the velocity formulation, and using the two 

different definitions of the swing-by attitude. The parameters used in this test are T

 
v


vv  

v  

v

Pv



v

v

Pv

v  
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 0

0

-33.0145,16.0291, 0.0110  km/s

3529.8832 d, MJD2000

320.2110 d

t

T







v

where  is the absolute heliocentric velocity at Venus, before the swing-by,  is 
the time at Venus, T  is the time of flight of the deep space flight from Venus to 
Earth. 

0v 0t

The angle of the plane   or  , the non-dimensional radius of the pericentre 

, and the fraction pr   of  at which the DSM occurs were left free, within these 

bounds: 

 

   
 
 

0,2   or  0,2

1,3

0.1,0.9

pr

   



 





 (2.13) 

Figures 2.9 from (a) to (f) show the magnitude of the DSM (i.e. cost of the 
transfer, or ) varying the geometric parameters of the swing-by, for different 
values of 

v
 , and for the two attitude definitions. Figures from (a) to (c) are referred 

to using  , while figures from (d) to (f) to  . 
 

 
Fig. 2.9. Cost of the DSM (Δv) as a function of γ, rp and for different values of α, by 

using the two definitions of swing-by plane: (a), (b), (c) using γ; (d), (e), (f) 
using ζ. 

(c) (b) (a) 

(f) (e) (d) 
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 (a) Using γ (b) Using ζ 

Fig. 2.10. Local optima of the transfer problem by using different definitions of 
swing-by plane: (a) using γ; (b) using ζ. 

 
It is clear that the shape of the function in case of   and   is very similar, 

considering that both angles are periodic over 2 , and taking into account a 
difference in phase of about 2 . 

In order to study the distribution of the local optima in the search space (2.13), 
using the two different models, 200 samples has been taken. The samples were 
generated using a Latin hypercube distribution, and each one of them was used as a 
starting point for a local minimisation with the MATLAB® function fmincon. The 
local optima have been plotted in Fig. 2.10, for the two attitude models. Once again 
the very similar distribution of the local minima points out that there is no 
substantial difference in the search space, therefore the choice of one model rather 
than the other is irrelevant. 

2.2.3 Launch 
Most of the interplanetary transfer trajectories start with a launch. The launch is the 
manoeuvre by which the satellite is put in orbit by a launcher. 

There are essentially two types of launch for an interplanetary journey. In the 
first one, the launcher puts the spacecraft directly into a hyperbolic escape orbit (as 
it happened for the Voyager spacecraft [19]); in the second type, the launcher puts 
the spacecraft, possibly with an upper stage, into an elliptic orbit around the Earth. 
Then, the firing of the upper stage or the engine of the spacecraft provides the 
acceleration needed to reach the hyperbolic escape orbit (as in the case of Galileo 
[100]. 

We consider the launch as the event, which injects the spacecraft into the 
interplanetary phase, by providing an excess of velocity, in the interplanetary frame, 
with respect to the departure planet. So we do not deal with the planetocentric phase 
of the launch, and we are not interested in whether the excess velocity is achieved 
through the launcher, the upper stage or the spacecraft. 

This assumption is very similar to the swing-by case, in which we assumed that 
the velocity at infinity (asymptotic velocity) in the relative reference frame is the 
relative velocity that the spacecraft has at the planet in an interplanetary frame. 
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In addition, it is common to find the maximum launch excess velocity in the 
launcher manual, as a function of the spacecraft weight and declination of the 
escape asymptote. 

In the velocity formulation of the trajectory model, the launch velocity has to 
be specified. Different reference frames, relative to the planet, exist to specify it. 
We have chosen a local spherical reference frame. With reference to Fig. 2.11, the 
launch relative velocity  is specified with its modulus, , and with its direction, 

through the angles 
0v 0v

  and  . They refer to a local coordinate frame along the orbit 
of the planet:   is the counter-clockwise angle (right ascension) in the orbital plane 
measuring the angle of the projection of  on the orbital plane starting from the 

heliocentric velocity of the planet ; 
0v

Pv   is the out-of-plane angle (declination) of 

 with respect to the orbital plane. Therefore, the velocity vector  in a 

tangential, normal, out-of-plane ( ) reference frame (

0v 0v

ĥˆ ˆ, ,t n Fig. 2.11, Fig. 2.12) can 
be computed with 

 0, 0

sin cos

sin sin

cos
tnh v

 
 


 
   
  

v , 

and from this reference frame and knowing position and velocity of the planet, it is 
possible to transform it into inertial Cartesian reference frame, through a standard 
transformation. It follows that  2, 2    , while for   any period of 2  

could be used, for example  0,2   or  ,    . 

 

0v

 
Fig. 2.11. Geometry of the launch. 

 
Fig. 2.12. Launch excess velocity reference frame. 
 

Pv




Orbital plane 

ĥ

t̂

n̂
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The three variables for defining  are usually part of the design parameters. 

There are several advantages in defining  through 
0v

0v   and  : first of all, the 
intrinsic reference frame allows not to depend on the planetary position and velocity 
at launch. Second, the modulus of the excess velocity, which is usually constrained 
by launcher capabilities, and part of the cost of the launch, is explicitly one of the 
parameters (therefore it is straightforward to put bound constraints on it). The 
direction of  can also be easily constrained, following the specifications of the 
asymptote direction of the considered launcher. 

0v

Assuming that the launch takes place from a given planet  (usually the Earth) 

at time , the ephemeris of the planet will provide its heliocentric position and 

velocity . Thanks to the patched-conic approximation, the heliocentric 

position of the spacecraft is also , while its velocity is 

1P

0t

,P Px v

Px

 0, 0abs P v v v . 

UNIFORM SAMPLING 

If we consider the modulus of the launch velocity 0v  fixed, then all the possible 
launch directions can be identified on the surface of a sphere. The drawback of 
considering spherical coordinates is that, when a uniform random sampling is 
performed on the two angles, the resulting points are not uniformly distributed on 
the surface of the sphere, but are concentrated on its poles (as in Fig. 2.13 (a)). This 
is due to the fact that the infinitesimal surface element  on the sphere is d A

    2
0 0 0d d cos d cos d dA v v v       . (2.14) 

Because of to the term cos , for equal values of ,d d 
,

, the area is smaller on the 

poles. This reflects in the fact that, if the coordinates    are used to sample all the 
possible launch directions (for example during an optimisation), then it is more 
likely to sample cases with polar launch. This is, actually, the least real case, as in 
most of the times, the excess velocity vector for an interplanetary mission lies very 
close to the ecliptic. 

To counteract this problem, we apply a transformation to the two angles [101]: 

 2
1 sin

2











 (2.15) 

from which, after differentiating, 

 
d 2 d

2d
d

cos

  





 
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 (a) Spherical coordinates (b) Uniform distribution 

Fig. 2.13. 10000 random points sampled on the surface of a sphere. (a) Sampling 
using spherical coordinates; (b) Sampling using uniform distribution. In 
(a) the points are clearly concentrated at the poles of the sphere. 

 
And after substituting back in Eq. (2.14) we get 

 2
0d 4 d dA v    , 

from which we note that now  lost the dependency on both the angles d A   and  . 

By substituting the bounds of   and   in Eqs. (2.15) we found the bounds for   
and  : 

 
 
 
0,1

0,1








 (2.16) 

By uniformly random sampling the space (2.16) the surface of the sphere is 
also uniformly sampled, as can be seen in Fig. 2.13 (b). 

2.2.4 Overall Trajectory Parameterisation 
The overall trajectory in velocity formulation is made of a sequence of deep space 
legs alternated by swing-bys, until reaching the last planet in the sequence. Each 
event, either swing-by or deep space leg, is computed using the final state of the 
spacecraft at the previous leg, therefore the trajectory is computed following the 
temporal sequence of the events. 

Given a sequence of  planets, Pn 1 2, ,...,
PnP P P   s , normally the trajectory 

begins with a free launch at  as it was shown in Section 1P 2.2.3. The planets 

 are used for swing-bys. The trajectory ends with the last leg arriving at 2 ,...,
PnP P 1

PnP . If planet 
PnP  is the mission goal, then no swing-by is performed. Instead, the 

arrival conditions can be used to compute the cost of a brake manoeuvre or orbit 
injection. In any case, the trajectory has 1Pn   interplanetary legs. 
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Other types of departure conditions are possible: a different solution vector for 
the trajectory is associated to each one of these. In the following subsections, three 
different situations are shown. 

INITIAL FREE LAUNCH 
This case refers to a trajectory starting with a free launch. When we say free we 
refer to the fact that the three components of the velocity vector at departure are 
design parameters, or somehow provided as parameters.  can be specified in any 
set of coordinates, but we assume to use what presented in Section 

0v

1T

2.2.3. In any 
case, the launch velocity requires three variables. The departure time  is another 
variable. Position, velocity and time are now known to initiate the interplanetary 
leg. This requires the time of flight to the next planet, , and the timing of the 

DSM 

0t

1 . The following swing-by requires the plane attitude angle 1  and the 

radius of pericentre . After the launch and the first interplanetary leg, each 

additional ith couple of swing-by/interplanetary leg requires 4 additional parameters: 
,1pr

, 1, ,i ir T 1,i p i   . The resulting solution vector, coding the design variables, is 

 
0 0 1 1 1 ,1 2 2

, 1 1 1 , 1

, , , , , , , , , ,...,

, , , ,..., , , ,
legs legs legs legs

p

i p i i i n p n n n

t v T r T

r T r T

    

      

 



x
 (2.17) 

INITIAL BALLISTIC ARC 
A different way of departure can be derived from (2.17). If the first deep space 
flight leg has no DSM, then it can be represented with a Lambert arc only, instead 
of a propagated arc followed by a Lambert arc. This assumption allows a 
considerable reduction of the parameters in the solution vector; furthermore, the 
corresponding trajectory model can be obtained as a sub-case of the free launch 
case, without any substantial modification to the trajectory model, in the way which 
will be shown. 

In order to solve the first interplanetary transfer entirely with a Lambert arc, we 
can fix 1 0   in (2.17). The propagation arc after the launch stops after 1 1 0T 

0

, 
which means that there is no propagation at all. As a consequence, the launch 
excess velocity is irrelevant to the trajectory. In addition, if we fix 0 , the 
heliocentric velocity of the spacecraft is the same of the velocity of the planet. 
Therefore, the first DSM will be computed by the difference in velocity between the 
boundary of the Lambert arc and the planet. In other words, the first DSM becomes 
the launch itself, with the advantage that the variables 

v

,   are unnecessary, and 

0 1,v   are null. 
In conclusion, for the case of a ballistic first arc, the solution vector is: 

  (2.18) 0 1 1 ,1 2 2 , 1 1 1 , 1, , , , , ,..., , , , ,..., , , ,
legs legs legs legsp i p i i i n p n nt T r T r T r T        

   x n

It was found that a DSM in the leg following the launch is not essential, unless 
the following swing-by is resonant [102]. If this is not the case, then the 
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contribution of the DSM can be included in the launch, without losing good 
solutions, but at the same time reducing the dimensionality of the problem and 
simplifying the search space. If on the other hand the first swing-by is resonant, the 
DSM has the important task of changing the velocity vector relative to the planet, 
thus enhancing the effect of the swing-by. As a rule of thumb, a DSM of magnitude 

 could result in a difference in relative velocity at the planet of about . v 2 v

INITIAL SWING-BY 
In some cases, the trajectory under consideration is only part of the entire mission 
transfer, therefore the initial state could be given as swing-by incoming condition. 
Then the first event in the trajectory is a swing-by of . Given that the initial 

absolute velocity  or  is assigned, as well as the initial time , the solution 

vector  is essentially the same as in the general case 

1P

0v 0,absv 0t

x (2.17), removing the 
variables related with launch and first leg: 

  (2.19) 1 ,1 1 1 , ,, , , ,..., , , , ,..., , , ,
L L L Lp i p i i i N p N Nr T r T r T        x N

2.2.5 Discussion 
We present here a brief discussion on two important points of the MGA trajectory 
model: the first is about the complexity of this model, which generates an 
exponential growth of the number of solutions as the number of legs increase; the 
second is about the possible strategies for obtaining interplanetary legs with more 
than one full revolution. 

MODEL COMPLEXITY 
The velocity formulation of the trajectory solves explicitly the gravity assist 
constraints. To do that, it requires the incoming velocity before computing the 
outgoing velocity. Furthermore, the computation of the transfer arc from planet  

to DSM at position 
iP

1iM   requires the velocity at the beginning of the arc. As a 

consequence, the Lambert arc from 1iM   to 1iP  is dependent on the full state 
vector at the end of the preceding arc. 

In general, every event coded using the velocity formulation (unpowered 
swing-by and interplanetary leg) depends on the variables of  which compete to 
that event, but also on the initial conditions. These in turn depend on all the 
preceding variables in . In other words, velocity formulations suffer from a 
dependency problem: each stage of the trajectory cannot be computed without all 
the preceding events. If we attempt to discretise the variables in the solution vector, 
the number of possible trajectories, corresponding to each discrete set of variables, 
grows exponentially with the number of legs. 

x

x

MULTIPLE REVOLUTIONS 
By using the deep space flight leg as described for the velocity formulation (i.e. 
propagation arc followed by a Lambert arc), multiple revolutions around the main 
attractor can be obtained essentially in three ways. 
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The first is by using the propagated arc, before the DSM. In fact, if the time of 
propagation i iT  is long enough, the spacecraft will eventually perform one or 
more full revolutions on its elliptic orbit. In this way, there is no direct control of 
the number of revolutions, as it depends on the period of the current orbit of the 
spacecraft, which in turn depends on all the previous parts of the trajectory. 

The second way of having multiple revolutions in a leg, is by explicitly solving 
a multiple revolution Lambert problem. In this case, the number of full revolutions 
shall be specified, and in fact this introduces a discrete variable for each Lambert 
arc in the design parameters. The number of full revolutions is directly controlled, 
and they will be performed after the DSM. 

Finally, more than one full revolution (but less than two) can be obtained even 
if the propagated arc and the Lambert arc sweep an arc smaller than 2  
individually, but they achieve a rotation greater than 2  when joined together. 

Certainly these three situations can be combined together to obtain a multiple 
revolution leg with more full revolutions both before the DSM and after the DSM. 

One could wonder, given an interplanetary leg with several full revolutions, in 
which revolution the DSM shall be placed. If the DSM does not change the 
semimajor axis of the orbit (and thus the period), then it is irrelevant whether it 
occurs at the first revolution or at the last one: the final state of the spacecraft at the 
end of the leg will be the same. This is not true if the DSM changes the semimajor 
axis: in this case, the spacecraft will cover more or fewer revolutions on the orbit 
after the DSM, which has a different period, and so the final state of the spacecraft 
will be different. 

2.3 Position Formulation 

The position formulation originated from the idea of keeping all the coast arcs of 
the trajectory uncoupled: position and time of each event along the trajectory are 
assigned: DSMs and swing-bys, and then each arc is computed as a solution of 
Lambert’s problem. Consecutive deep space flight legs are matched together at the 
planet through a powered swing-by event. Therefore, interplanetary legs are 
computed first, and their velocities at the boundaries are used to compute the swing-
by. 

2.3.1 Interplanetary Leg 
Each planet-to-planet interplanetary leg in this model is composed of a number of 
coast arcs, connected by DSMs. 

For each DSM, the time and the position are free parameters of the model. 
With reference to Fig. 2.14, also the departure time from planet  and the arrival 

time at planet  are free parameters of the model, and from these free parameters, 
through the ephemerides, it is possible to compute the position and velocity of the 
planets on their orbits. The position and velocity of the planets is important to 

1P

2P
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compute the incoming and outgoing conditions of the gravity assist manoeuvre 
according to the powered swing-by model, as it will be explained in Section 2.3.2. 

The position of each DSM, in a given leg, is identified through its radius, right 
ascension and declination defined in a particular reference frame, centred in the 
main attractor. With reference to Fig. 2.15, let assume a leg starting from planet  

at time  to planet  at time . Let us consider, as reference plane, the plane 

defined by the orbit of planet . The position of the ith DSM, which occurs at point 

1P

1t 2P 2t

1P

iM  in space, is specified by the following components: 

 Distance from the main attractor, 
iMr ; 

 In-plane angle (right ascension) 
iM , counter-clockwise in the reference 

plane, and measured from planet 1P  at the time of planetary encounter; 

 Out-of-plane angle (declination) 
iM , or elevation angle from the reference 

plane. 
 
 

 
Fig. 2.14. A representation of a leg (with two DSMs) in the position formulation. 

 
 

 
Fig. 2.15. Definition of the position of the DSM. 
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This choice is made such that the position of the DSM depends on the position 
on the previous planet. Since usually the DSM is more efficient if it follows closely 
the swing-by, then box bounds can be easily defined to constrain the DSM to this 
position relative to the planet. On the other hand, the position of the DSM changes 
with the time of the swing-by, following the ephemeris, and thus the three 
coordinates are not sufficient to determine its position in space. Assigning the 
position and epoch of the DSMs is equivalent to assigning the epoch of the swing-
bys and then obtaining their positions through the ephemerides. 

The radial distance 
iMr  can be given non-dimensionally or dimensionally. In 

the non-dimensional case, the following choice was made: 
 0

iMr   corresponds to the radial distance of the first planet 
1Pr  at the time 

of the encounter; 
 1

iMr   corresponds to the radial distance of the second planet 
2Pr  at the 

time of the encounter. 
Note that this does not mean that suitable values for the non-dimensional radial 

distance 
iMr  are bounded in the interval  0,1 . 

The choice of non-dimensional radius once again turns out to be useful for 
setting proper bounds for the variable: in fact, the justification for this type of 
normalisation can be found by considering the common case in which the orbits of 

 and  are circular or quasi-circular. If the transfer between the two is similar to 
a Hohmann type of transfer, then the trajectory will be confined in the circular 
corona delimited by the orbits of the two planets, and so will the DSMs. Thus in 
this case the bounds for the non-dimensional 

1P 2P

iMr  can be set to  0,1  or tighter. 

In all the other cases, especially if the planet’s orbits are eccentric, values of the 
radial distance less than 0 or greater 1 are perfectly acceptable. 

Note that the main drawback of using a non-dimensional radius is when the 
transfer trajectory lays well outside the corona defined by the planetary orbits. This 
can be the case for highly elliptical orbits, but especially for resonant legs. In a 
resonant leg, the departure and arrival planets are the same, thus the corona between 
the two orbits degenerates, and usually the trajectory of the spacecraft goes quite far 
from it. In addition, the radius of the planet at departure  will be very similar (in 

the case of non-eccentric planets) to the radius of the planet 
2
. The difference 

between the two then is unsuitable to be used for normalisation. In this case, then, it 
is advisable to use the dimensional distance. 

1Pr

Pr

The time of each DSM 
iMt  is defined as a fraction of the total time of flight of 

the leg, by using the parameters  0,1
iM  : 

 1

2 1

i

i

M
M

t t

t t






. 

Once the position and timing of all the DSMs in the leg have been defined, as 
well as the position and timing of the planetary encounters, then it is possible to 

 



52 MGA TRAJECTORY MODELS 2. 
 

solve all the coast arcs. In fact, each coast arc can be computed as the solution of a 
Lambert’s problem. The first coast arc connects   at  with 1P 1t 1M  at 

1Mt , and its 

duration is  2 1t t 1 . If DSMn  DSMs are present, then each arc connecting two 

consecutive DSMs iM  and 1iM   has a duration of  
1i2 1 iM Mt t t


  . Finally, the 

last arc connects the last DSM to  at time , and lasts 2P 2t 2 nMt t . 

Note that, if multiple revolution and/or retrograde Lambert arcs have to be 
considered, then additional parameters are needed to specify the type of each 
Lambert arc. 

As a result of the solution of the Lambert problems, a set of velocities are 
obtained. In particular, the velocity 1

v  at planet , the velocity 1P 2
v  at planet , 

and all the pairs of velocity vectors across each DSM, 
i

2P

M
v  and 

iM
v . These can be 

used to compute the total cost of the interplanetary leg. In fact, each engine burn at 
the generic DSM point iM  must provide a change in velocity such that 

iM
v  turns 

into 
iM

v . Therefore, the total cost v  of the interplanetary leg is given by: 

 
1

DSM

i i

n

M M
i

v  



   v v . 

If the transfer leg is the first in a sequence, its initial velocity vector is used to 
compute the launch conditions, while if the leg is the last in a sequence its final 
velocity vector is used to compute the capture conditions. The velocity vectors at 
the boundaries of each other transfer leg are matched to the velocity vectors at the 
beginning or at the end of, respectively, the following or preceding leg through a 
powered swing-by. 

2.3.2 Powered Swing-by 
A powered swing-by manoeuvre exploits a combination of gravity and propulsive 
action to turn the relative incoming velocity vector onto the relative outgoing 
velocity vector [59]. The legs preceding and following the swing-by provide the 
incoming velocity  and the outgoing velocity v v .  

Assuming that the spacecraft approaches the planet from infinity ( r ), and 
considering that the planet moves with velocity , the relative incoming and 

outgoing velocities  and 


Pv


v 

v  can be computed as / /
P

   
  v v v . Since  and 

 are computed independently one from the other, they do not necessarily have 
the same modulus and the gravity of the planet cannot be sufficient to turn the 
incoming asymptote onto the outgoing one. Therefore, an impulse manoeuvre is 
introduced at the pericentre of the inbound hyperbola leg (denoted with (1) in 


v


v

Fig. 
2.16) to generate an outbound hyperbola leg (denoted with (2) in Fig. 2.16) with the 
required . Since the velocity is maximum at pericentre, a manoeuvre in this point 
represents the most effective way to achieve the outgoing conditions [


v

103]. 
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


 
Fig. 2.16. Geometry of the powered swing-by with tangential manoeuvre at 

pericentre. 
 
The required deflection angle,  , is defined as the angle between  and : 

v 
v

 
 arccos


 
 

 
 




v v

v v
. 

In theory, a single manoeuvre at the pericentre of the hyperbola, at distance , 

normal to the local position vector and in the plane of the hyperbola, should be 
sufficient to achieve the required outgoing velocity vector. However, the distance 

 is limited to be above the surface of the planet (or above its atmosphere). The set 

of possible outgoing velocities is therefore limited. If no tangential manoeuvre can 
achieve the desired outgoing conditions, a non-tangential manoeuvre is required. In 
the next two sections, the two models for tangential and non-tangential manoeuvre 
are presented. 

pr

pr

TANGENTIAL MANOEUVRE 
If the manoeuvre is tangential to the orbit at pericentre, it does not change the 
position of the pericentre (see Fig. 2.16). Using the results found for the unpowered 
swing-by, the semimajor axes of the two legs are: 

 
   1 22 2

,P Pa a
v v

 
 
 

     

and the corresponding eccentricities, expressed as a function of the radius of the 
pericentre  are: pr

 1 2
1 2

1 2

,pa r a r
e e

a a
p 

  . (2.20) 

v

pr
,1




v

2

,1pv ,2pv  ,2

1

1
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The problem then is to find the radius of the pericentre  (or equivalently, 

since  is given, the targeting distance 

pr

v 1 ) such that the required deflection angle 

  is achieved. In particular, considering Fig. 2.16, we can state that the semi-
deflection of each leg of the hyperbola is related to its eccentricity in the following 
way: 

 1 2

1 2

1
arcsin , arcsin

2 2e e

    
    

   

1
. (2.21) 

Thus, the total deflection angle should be: 

 1 2

2 2

     

or, using Eqs. (2.20) and (2.21): 

   1 2

1 2

arcsin arcsin 0p
p p

a a
f r

a r a r


   
           

  . 

This can be treated as a zero-finding problem, with  limited from below. 

Thus we can state the problem as: 
pr

 
 

,

Find: | 0

s.t.:    

p p

p p min

r f r

r r




 

We can use a Newton-Raphson method, using  as a starting point: ,p minr

    
  

 

1

i
p

i
pi i

p p

p r

f r
r r

df

dr

   . 

If a value of  is found, then there is no need to investigate further. The cost of the 

powered swing-by in terms of 
pr

v  is: 

 ,1 ,2

2 2P P
p p

p p

v v v v v
r r

  
        . 

At each iteration, we also have to monitor whether  i
pr  becomes smaller than 

. If so, then this strategy cannot find a feasible solution to the problem (i.e., a 

too small value of  is necessary), and the loop can be aborted. Should this 

happen, the following strategy is started. 

,p minr

pr
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NON-TANGENTIAL MANOEUVRE 
If a solution cannot be found with a tangential manoeuvre at pericentre, then the 
following strategy is used to find a suitable non-tangential manoeuvre at the 
pericentre of leg (1). 

The value for the radius of the pericentre of leg (1) is set to ,1 ,p p mr r in . In fact, 

this allows exploiting the maximum possible deviation from the natural dynamics of 
the swing-by, thus minimising the propelled v . 

Since the manoeuvre is not tangential, the pericentre of leg (2) changes. With 
reference to Fig. 2.17, we can consider that the line of apsides of leg (2) is rotated 
by an angle   with respect to leg (1). The problem in this case is to find the value 
of   such that leg (2) passes through the pericentre of leg (1). The polar equation 
for the hyperbola leg (2) can be written as: 

    2
2 2

2

1

1 cos

a e
r

e








. (2.22) 

To force the passage, we can impose that: 

   ,1pr r   

and Eq. (2.22) becomes: 

    2
2 2 ,1 2 ,11 cosp pg a e r e r      0 . (2.23) 

 

 
Fig. 2.17. Geometry of the powered swing-by with a non-tangential manoeuvre at 

pericentre. 
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So the problem is: 

  Find: | 0g   . 

Considering that ,2     , Eq. (2.23) can also be rewritten as: 

 
   

,12
2 ,12

,2 ,2

cos
0

cos cos
p

p

ra
a r


  

    . 

This time, there are no physical constraints on the value of  , nevertheless 
care must be taken as there are two singularities in Eq. (2.23) for each period of  . 
Once   has been found, for example using once more a Newton-Raphson iterative 
method, then the  can be computed. The modulus of the two velocity vectors at 

, before and after the manoeuvre, can be easily computed, from the energy 

equation, as: 

v
,1pr

 ,1 ,2
,1 1 ,1 2

2 2
,P P P P

p p
p p

v v
r a r a

  
   


. 

The former is purely transversal, as it is at the pericentre of leg (1), while the 
latter is not (see Fig. 2.17). Its transversal and radial components can be calculated 
from the angular momentum: 

 
 2

2 2 2 2
,2, ,2, ,2 ,2,

,1

1
,

P

p p r
p

a e
v v

r p pv v 

 
   . 

At this point, we can compute the total change in velocity needed: 

  2 2
,2, ,1 ,2,p p pv v v v    r . 

Before concluding this section, let us remark that unpowered swing-bys can be 
used in the position formulation. It was shown above that the powered swing-by is a 
manoeuvre to match the incoming and outgoing velocity vectors at the planet. If the 
unpowered swing-by is used, instead, Eqs. (2.4), (2.7) and (2.10) define non-linear 
constraints that cannot be solved explicitly, but they have to be taken into account 
as non-linear constraints in the trajectory model. This ensures that the modulus of 
the incoming and outgoing relative velocity vectors are the same, and the deflection 
angle   is small enough that it can be achieved with a radius of pericentre above 
the lower limit, as required by the unpowered swing-by model. 

2.3.3 Overall Trajectory Parameterisation 
Given a sequence of planetary swing-bys, a launch planet and an arrival planet, the 
entire trajectory is composed of a set of legs, which connect the planets, from 
departure to arrival, through all the swing-bys. Each leg may contain one or more 
DSM. 
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Table 2.1. Solution vector for a trajectory in position formulation. 
Parameter Description 

0t  Launch date 

lT  Time of flight of each leg l 

, , ,
i i i iM M M Mr    Timing and position of each DSM i 

 
The parameters needed for modelling a trajectory with the position formulation 

are summarised in Table 2.1. The launch date  determines when to depart from 
the departure planet. The timing of all the swing-bys and arrival to the last planet 
are defined through the time of flight of each leg . The ephemerides provide the 
position of all the planets at the given times. Position and timing of DSMs are given 
through 

0t

lT

iM ,  , ,
i i iM M Mr   . 

Let a trajectory be made of  legs (and thus legsn 1legsn   swing-bys), with each 

leg l made of  arcs (and thus  arcsn l   1arcsn l   DSMs). The total number of DSMs 

is 

   
1

1
legsn

DSM arcs
l

n n l


  , 

and the total number of variables in the solution vector to fully characterise the 
trajectory is: 

 1 4legs DSMn n  . 

The solution vector for this trajectory is therefore: 

  


1 1 1 1 2 2 2 2

0 1 2, , ,..., ,

, , , , , , , ,..., , , , .

legs

n n n nDSM DSM DSM DSM

n

M M M M M M M M M M M M

t T T T

r r r        

x

Algorithm 2.1 presents briefly the loops needed to compute the entire 
trajectory. The overall trajectory is built by computing first all the deep space legs 
(and the DSMs between each couple of arcs), and then the swing-bys (and their 
cost). 

The total cost of the trajectory is obviously the sum of all the DSMs and the 
swing-by impulses. The launch excess velocity and relative velocity at the target 
planet of the sequence can be computed taking the difference between the velocities 
at the bounds of the trajectory and planetary velocities. 
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Algorithm 2.1. Computing the entire trajectory in position formulation. 
 1: For  1 legsl n 

 2:  For  1 arcsi n  l  

 3:   Compute Lambert arc 
 4:  End For 
 5:  For  1 1arcsi n l   

 6:   Compute ,l iv  of the DSM between arc i and  1i 
 7:  End For 
 8: End For 
 9: For  1 1legsl n 
 10:  Compute powered swing-by between leg l and 1l   
 11:  Find cost of the lth swing-by SB

lv  
 12: End For 

2.3.4 Discussion 
The position formulation model is flexible concerning the number of planetary 
swing-bys, as well as the number of DSMs in each leg. In fact, it is possible to vary 
the number of DSMs or swing-bys without any substantial change to the structure 
of the trajectory, and only at the cost of adding 4 more variables to the solution 
vector for each additional DSM, and 1 variable for each additional leg. As it will be 
shown in the following, especially with regard to the number of DSMs, this is 
something that cannot be achieved with the velocity formulation. 

An advantage of this formulation is that the complexity of the MGA problem 
grows polynomially with the number of swing-bys and with the number of DSMs. 

In the following subsections, we will briefly discuss these two features of the 
position formulation model. In addition, a few considerations about using powered 
and unpowered swing-bys are presented. 

USING MORE DSMS PER LEG 
There are essentially two advantages in using more than one manoeuvre in each leg. 
The first is that each DSM splits the Lambert arcs, thus enabling multiple revolution 
legs without solving a multiple revolution Lambert problem. For example, let us 
assume to have one leg with no DSM. If we solve the arc using a single revolution 
Lambert arc, then spacecraft cannot perform more than one revolution during that 
leg. Now imagine introducing a DSM in the leg: in this case, the leg will be 
composed of two single-revolution Lambert arcs, and so the spacecraft will be able 
to perform up to 2 complete revolutions. Note that shorter solutions are still 
available even with an arbitrary number of DSMs. 

This can be seen as a way to tackle multiple revolution legs without the need 
for an integer to represent the number of revolutions in the Lambert problem, and 
thus avoiding to have a mixed integer-real search space. 

The second advantage is that it allows a better distribution of the  along the 
leg. For some types of legs, two impulses are necessary to reach the desired target 

v
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orbit with the correct phase. In addition, if we fraction the v  provided by a single 
DSM into more manoeuvres, the amount of v  of each manoeuvre is smaller. This 
means that even a smaller level of thrust, hence a smaller engine, is needed to 
obtain the velocity change. The more DSM we consider for each leg, the more the 
leg approximates a low-thrust arc, in which the v  is provided continuously and is 
distributed along the entire arc. 

The following example illustrates how the total cost of the trajectory can take 
benefit from multiple DSMs. Two types of EVM transfers are considered: both of 
them have no DSM in the first leg; in the second leg, instead, the former has one 
DSM, while the latter has got two. If we identify each DSM with a d in the 
sequence, the two sequences can be identified with EVdM and EVddM, 
respectively. 

For both instances, the objective is to minimise the total v , which is the sum 
of the launch excess velocity, the relative velocity at arrival at Mars (assuming that 
we would like to rendezvous with Mars), and the DSMs. An optimisation can be 
run for the two cases, using the bounds presented in Table 2.2: the best solutions 
found for either case are represented in Fig. 2.18. Although the two transfers appear 
identical, the one with two manoeuvres is 50 m/s cheaper. 

MODEL COMPLEXITY 
As we mentioned already, one important advantage of this formulation is that the 
model complexity is polynomial with respect to the number of DSMs and the 
number of swing-bys. This is a direct consequence of the fact that the position 
formulation allows us to compute each arc independently of the other arcs. 
 
Table 2.2. Bounds for EVM transfer, both in case of one and two DSMs in the second 

leg. 
EVdM EVddM Variable 

LB UB LB UB 

0t , d, MJD2000 4452.5 4492.5 = = 

1T , d 152.29 192.29 = = 

2T , d 677.61 717.61 = = 

1r  0 1 = = 

1 , rad 0 2  = = 

1 , rad –0.1 0.1 = = 

1  0.01 0.6 0.01 0.3 

1r  / / 0 1 

1 , rad / / 0 2  

1 , rad / / –0.1 0.1 

1  / / 0.3001 0.6 
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 (a) EvdM (b) EVddM 

Fig. 2.18. Best solutions found for the two instances of the EVM transfer problem. 
(a) EVdM, the total Δv is 8.14 km/s; (b) EVddM, the total Δv is 8.09 km/s. 

 
To explain better this concept, let us assume, without loss of generality, that the 

problem is planar and that the distance of each DSM from the centre of the 
coordinate system is constant; then, the position iM  of each DSM can be identified 

by a single variable: the angle 
iM . We can for example set 1

iMr   and 0
iM  . 

The time at which the DSM happens requires another variable, 
iM , or equivalently 

the time 
iMt . If we consider that each angle 

iM  can assume only values from a set 

of k on the whole circle  0,2 , and each time a set of h values, then the number of 

distinct possible positions on an ideal time-space grid for a DSM is equal to hk . 
The position of the planets is determined through the ephemerides, thus only one 
parameter, the epoch, has to be specified. Once again, it is assumed that there is a 
finite set of h possible epochs. This means that there are 

  2h hk h k 

possible distinct arcs to go from planet 1  (at a given time 1 ) to 1P t M  (at a given 

time 
iMt  and position 

iM ). These arcs can be computed independently of the rest of 

the trajectory, once 
1 11, ,M Mt t   are given. The same holds for connecting the last 

DSM to the arrival planet of the leg. 
An arc connecting two consecutive DSMs is determined when time and 

position of the two DSMs is fixed (see Fig. 2.19 for an ideal representation). Thus, 
the total number of independent arcs is 

 . 2 2hk hk h k 

Once again, these arcs can be computed independently of the other parts of the 
trajectory. For the trajectory given as an example, with 2 DSMs, the total number of 
independent legs is 

  2 2 2 2 2 22h k h k h k h k h k    2
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Fig. 2.19. If we imagine to discretise position and time of two consecutive DSMs, then 

the possible arcs connecting the two are all and only those found by 
connecting a point on the grid DSM 1 to a point on the grid DSM 2. The 
arcs do not depend on any other parameter in the solution vector. 

 
and in general, if DSMn  DSMs are considered: 

  2 22 1DSMh k n h k  2 . 

Therefore, the position formulation does not suffer from any dependency on the 
previous legs and the growth of the number of solutions is polynomial. 

COMPARISON BETWEEN POWERED AND UNPOWERED SWING-BYS 
It was mentioned in Chapter 1 that the powered swing-by generates super-optimal 
solutions, with respect to the model with manoeuvres in deep space only. This is 
due to the fact that performing a corrective manoeuvre at the pericentre of the 
swing-by hyperbola is more efficient than performing the manoeuvre in deep space, 
even if the manoeuvre is very close to the planet ( 0  ). As a result, the same 
transfer trajectory may result to be less expensive (in terms of v ) when computed 
using powered swing-bys, than the using velocity formulation. This can be a 
problem because, as discussed, powered swing-bys pose serious constraints in the 
operations phase. 

As an example, let us consider the Cassini mission. If the trajectory is modelled 
with the position formulation and no DSMs, the resulting minimum-  trajectory 
is shown in 

v
Fig. 2.20 (a): the total v , including launch excess velocity and all the 

powered swing-bys, resulted to be 4.45 km/s (the statement of this transfer 
optimisation problem, including bounds and objective function, can be found in 
[65]). 

The same solution can be constructed using the velocity formulation with 
DSMs. A first guess is generated by extracting all the parameters necessary for the 
velocity formulation from the optimal trajectory in position formulation, except for 
the positions of the DSMs. These are initially set very close to the departure planet 
( 0.01i  ). An optimisation is then run to find a locally optimal solution in a 

2r DSM 2 

1r  
DSM 1 

2tk  

1t

h
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neighbourhood of the first guess. The resulting solution, in Fig. 2.20 (b), has a cost 
of 4.58 km/s, which is about 130 m/s more expensive than the analogous solution in 
position formulation. 
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 (a) Position formulation (b) Velocity formulation 

Fig. 2.20. ACT “Cassini1” optimal solution with position formulation (a) and 
velocity formulation (b). 

2.4 Discussion 

In this chapter, two different formulations for modelling an interplanetary MGA 
trajectory have been presented: the position formulation and the velocity 
formulation. Appendix B describes a paradigm to model virtually any type of 
trajectory, by decomposing it into building blocks. It is shown that the paradigm can 
be used to model the position and the velocity formulations of the trajectory, as well 
as a combination of the two. Furthermore, it is shown that it is possible to sort the 
blocks in a sequence such that it can be evaluated incrementally. 

The incremental pruning method that will be presented in this thesis is based on 
the velocity formulation of MGA trajectories; some aspects of the position 
formulation were addressed by Becerra et al. in [104] and [105]. The main 
motivations for addressing the velocity formulation can be summarized as follows: 
the velocity formulation gives an unconstrained problem with lower dimensionality 
with respect to the position formulation, which in turns gives a constrained problem 
with higher dimensionality; the model based on the velocity formulation is closer to 
the actual way trajectories are operated in space (e.g. no powered swing-bys are 
performed in real missions); finally, as mentioned above, a model based on the 
position formulation can generate solutions that are more energy efficient than a 
model based on the velocity formulation, therefore the latter is more conservative. 
Nevertheless, an incremental approach based on the position formulation is 
possible, thanks to the findings in Appendix B. 

 



 

3  
 
 
INCREMENTAL PRUNING 

This chapter will describe the incremental pruning process that is proposed in this 
thesis, to prune the search space of gravity assist trajectories. The objective of this 
algorithm is to remove those parts of the search space in which a global optimum is 
less likely to be found and to intensify the search on the remaining parts. A number 
of tests, based on a rigorous testing procedure, will compare the performances of 
the pruning approach against other deterministic and stochastic off-the-shelf 
optimisers. 

3.1 Introduction 

A single-objective global minimisation problem with bound constraints can be 
stated in the following way. Consider a scalar function  f x , in which the decision 

(or solution) vector  is bounded within the set x  | lD  x x x xn  u . The set 

D  will be called the solution domain or solution space, in the following, and  
are the lower and the upper bounds on the values of x. 

,l ux x

Hence, the problem is to find x  such that     ,f f D   x x x . 

Equivalently, it is possible to define a global maximisation problem by defining 
f f   . We will refer to the minimisation problem in a compact form as: 

   min
D

f
x

x  (3.1) 

Problem (3.1) aims at identifying a single point in D. A more general problem 
is the one of finding the ε-set containing the global optimum x . The ε-set is 
defined as follows, given 0  : 

     |X D f f    x x x  (3.2) 

63 
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The -set is generally disconnected and requires the identification of multiple 
simply connected subsets of D. However, this second problem is particularly 
common in modern space mission preliminary design. In fact, considering that each 
variable in the decision vector represents a design parameter, having a number of 
different solutions  implies having different optimal design points, among which 
a trade off can be performed. Considerations, related with other subsystems of the 
spacecraft, can be used to choose the baseline solution: for example, the trajectories 
may differ for their eclipses, or arrival and departure conditions, or reliability due to 
passages in the vicinity of bodies or radiation belts, etc. In space mission design, 
having one or more back-up designs is also fundamental, due to the strict conditions 
on launch. Other solutions can be used for designing back-up missions. 

ix

Furthermore, the ε-set contains the neighbourhoods of all the local minima at 
distance lower than ε from the global one. The identification of the neighbourhood 
provides a measure of the robustness of the local minima, i.e. a large 
neighbourhood corresponds to a robust local minimum. In the specific case of 
trajectory design, the neighbourhood is generally called a launch window. 

Many optimisation algorithms (optimisers) exist in literature to tackle problem 
(3.1). Many of them consider the objective function  f x  as a black box, i.e. they 

do not need any particular information about the shape or the properties of the 
function f . If the function is not defined in a subset of the domain D, a simple 
workaround is still possible by assigning a very high fictitious objective value. 
Others, like sequential quadratic programming (SQP) [106] require some 
assumptions on the properties of f , most commonly existence, boundedness, 
continuity or differentiability over the domain. 

The approach proposed in this section is conceptually different from black-box 
approaches but still avoids the requirement on the continuity and differentiability of 
the objective function. The idea is to exploit some general characteristics of the 
problem to direct the search for the ε-set only towards promising areas of the search 
space, avoiding the typical exploration overhead of generic black-box algorithms. 
At the same time the algorithmic complexity is maintained polynomial, avoiding 
the exponential increase of the computational cost with the problem dimensionality 
(typical of exhaustive methods). 

According to the well known “no free lunch” theorem [107], on a particular 
problem, different search algorithms may obtain different results, but over all 
problems, they are indistinguishable. It follows that, if an algorithm achieves 
superior results on some problems, it must pay with inferiority on other problems. 
In this sense, there is no free lunch in search. 

Therefore, the idea here is to build a search method that is specialised on a 
specific class of problems, of which the MGA trajectory design problem is one 
instance, to maximise performance rather than versatility (Fig. 3.1). 
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Performance 

All-purpose optimisers 

Specialised 
optimisers 

Versatility 
 

Fig. 3.1. Versatility VS. performance for optimisation methods. 

3.2 Incremental Approach 

3.2.1 General Concept 
The main idea behind incremental approaches is to decompose a problem into a 
cascade of sub-problems, of smaller dimensions, and build a solution by composing 
the solutions of all the sub-problems. 

In particular, the problem is to search for the ε-set by incrementally removing 
the regions of the domain in which there is no possibility to find good solutions (or 
there is very little). The process of removing some parts of the solution space is 
commonly know in literature as pruning, due to the fact that it is mostly used by 
branch and bound techniques, which explore the whole domain as a tree [78]. The 
final aim of the incremental process is to obtain a residual domain D  after pruning. 
A search can be performed on the residual domain, to find the global optimum or a 
set of low-laying solutions. If the pruning is effective, the remaining solution space 
should be smaller and easier to explore, by means of any generic search engine. 
Thus, a lower computational effort should be needed to find a solution of the same 
quality with respect to the exploration of the whole domain D. Equivalently, better 
solutions can be found with the same computational effort. 

The incremental pruning approach, introduced in this section, exploits 
important properties of the MGA trajectory design problem. However, the method 
itself can be applied in principle to any problem whose objective function has the 
same properties. 

Let us consider a partitioning of the variables in the solution vector  into x LN  
partitions: 

 ,1 ,2 ,...
LL L L N

   x x x x . 

The number of variables within each partition i is free, and depends on the 
problem through the objective function, as it will be shown later for the MGA 
trajectory. 
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Each set of variables  is bounded by  and , so all the possible points 

 define a hyper-rectangular domain, which will be named 
,L ix lx ux

,L ix ,L iD , hence we can 

write ,L i L i,Dx . Since the dimensionality of ,L iD  is smaller than the dimensionality 

of D, but the bounds for the dimensions in common are the same, we can consider 

,L iD  as a dimensional slice of D, along the dimensions represented by . ,L ix

We introduce now another set of vectors of variables which are built up in the 
following way: 

  

1 ,1

2 ,1 ,2

,1 ,2 ,

...

...
L L

L

L L

N L L L N



   

   

x x

x x x

x x x x x

i

L

Correspondingly, we define the set of domains , such that . Again, 

the domains  are dimensional slices of D. In particular, we can define each one 
as: 

iD i Dx

iD

 ,1
, 1...

i

i L kk
D D i N


  , 

where the product is to be intended as a Cartesian product among sets. Note that, in 
the particular case of , we have Li N

LND D . 

The problem has now been decomposed into sub-problems, which will be 
referred to as levels in the following. Note that the sub-problem at each level 
includes all the variables of the preceding levels. 

Now let us introduce an objective function  f x , and assume that the function 

is a sum of terms if  which depend on 1 2, , ...,
LNxx x : 

 . (3.3)    
1

LN

i i
i

f f


x x

We will call each function if  partial objective function for level i. Thus, the 
total objective is built-up level by level, incrementally. It is important to stress that 
the function if  associated with level i depends only on the part of the solution 
vector related to the levels from 1 to i. 

The underlying assumption of the incremental approach is that the solution of 
the whole problem is the sum of the solutions of all the sub-problems. In order to 
satisfy this assumption the functions if  need to be properly defined. Without loss 

of generality, let us consider that each if  is non-negative: 

   0, , 1...i i i i Lf D i N   x x . (3.4) 
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According to Bellman’s principle of optimality [108], if all the partial solutions 
from 1 to i are optimal, if  is a lower bound for jf , when j i , and for the whole 

objective function f . Although this is generally true, it does not help us to define a 
proper partial objective function since a minimum, local or global, of the partial 
objective function is not generally a minimum for the whole objective function f . 

On the other hand, if  is the global minimum of the objective function f, we can 
identify at each level i a set 

x

iD  such that i iD x , where i
x  is the partial vector 

containing the components of x  up to level i. We start by defining a subset of  

,L iD  as: 

   , , , 1 ,|L i L i L i i i L i iD D f f    x x x  (3.5) 

where if  is the pruning threshold. Then we can define the feasible set i iD D  at 
level i  as: 

 1i i L,iD D D  . (3.6) 

We call the Boolean condition 

 ( )i i i if f  x  (3.7) 

the pruning criterion, since it generates the domain iD  b

th

y removing, or pruning, the 

portion of iD  at does not satisfy the condition. The interest is therefore to 
converge to a set of solutions with a low laying value of the partial objective 
function. Note that the definition of the feasible set (3.6) is consistent with 
Bellman’s principle of optimality. Once iD  has been identified, through a search 

method, we can consider for level 1i   the new solution space: 

 , 1i L iD D  . (3.8) 

The overall process is called incremental pruning and requires the definition of 
a pruning criterion at each level i. What makes this approach interesting is that the 
evaluation of a partial objective function can be remarkably less expensive than the 
evaluation of the complete function f, and the associated search space is easier to 
explore. Thus it is possible to search on level 1, using 1f  on 1 L,1D D , and ideally 

remove (or prune) from the search space all the sets of values for which the partial 
objective function is above the threshold. The result is a residual partial domain 

1 1D D . Then the process continues with level 2, considering 2f , on 1 ,L 2D D . 

Note that this partial domain has a smaller volume than 1 ,2LD D , as there are sets 

of points in 1  which have already been discarded during the pruning of level 1. 

The reduction of the search space at level i makes the search at level  more 
effective. At the last level, the complete objective function 

D
1i 

f  is then minimized, on 
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the remaining part of the search domain which was not pruned at previous levels, 
which is 

LND D . 

Note that care must be taken in defining the different pruning criteria and the 
partial objective functions. For example, if a threshold is used, while keeping the 
thresholds too high will result in a light pruning with little improvements on the 
computational speed of the optimiser, lowering the threshold too much may result 
in having the optimal solution left out of the residual search space, if the search is 
not exhaustive. Furthermore, as it will be shown later in different test cases, for 
some particular kinds of problems, the partial objective functions if  and the 
pruning thresholds are not related to f. In fact, for some cases, it is possible to 
exploit the knowledge of the physics of the problem, to create a partial objective 
function in which if  does not contribute to the value of the objective function of 
the whole problem (as in Eq. (3.3)) but is specifically devised to prune the search 
space at level i. 

Note that at this point there is no assumption on the morphology of the residual 
domains iD : they are simply a subset of the corresponding domains . Also, iD iD  
is not necessarily simply connected. 

Another important point to underline is that the proposed incremental 
approach, in its basic form, is independent from the search method that is used to 
define the feasible set iD  at each level i. 

Finally, it is worth underlining that the incremental pruning does not change 
the nature of the problem. If the problem is NP-hard with the number of variables, it 
will remain so even with an incremental pruning. On the other hand, the algorithmic 
complexity remains polynomial as long as the identification of iD  is polynomial, 
i.e.  avoids the exponential growth of the size of the solution space, as more levels 
are added to the problem. This can be achieved with a combination of suitable 
pruning criteria and polynomially complex search algorithms at each level. Part of 
this work will be dedicated to the study of appropriate pruning procedures, in order 
to maximise the pruned space, while preserving the promising solutions. 

3.2.2  Back Pruning 
From Eqs. (3.5) and (3.6), it is clear that the pruning process, at each level, acts on 
the dimensional slice of domain that includes the variables of that level. In other 
words, the pruning at level i generates a residual domain ,L i L i,D D , but does not 

modify the  part of the search space that involves the previous levels, i.e. 1iD  . 
This can result in a important limitation. In fact, it can happen that, while 

applying the pruning criterion at level i, a portion of the solution space, which was 
feasible at previous levels, does not contain any acceptable solution anymore. 
Hence, it is possible to further restrict the feasible solution space at level i. This can 
be achieved by defining the feasible set at level i directly from the pruning criterion. 
So instead of using Eqs. (3.5) and (3.6), we define directly: 
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   |i i i i iD D  x x

i

 (3.9) 

and since , it results that i Dx i iD D , hence the search space can be further 
pruned at later levels on all the variables. 

This procedure will be referred to as back pruning in the following, because of 
the need to go back to all the previous levels and redefine the feasible set. This is 
opposed to the incremental (forward) pruning, which prunes the search space going 
forward level by level, and every time freezing the domain iD . 

3.2.3 Generalisation of the Incremental Pruning 
The concept of the incremental pruning presented in Section 3.2.1 is exact, in the 
sense that, if the search for the feasible sets at each level is exhaustive, the 
algorithm guarantees to preserve all the solutions below the selected pruning 
threshold, and to prune all the others at some level of the incremental pruning 
process. 

While applying the process to real problems, it resulted that more flexibility 
was needed, together with the relaxation of some of the hypotheses on the objective 
function or the pruning criteria. 

In fact, for a wide range of real problems, the pruning criterion is not simply an 
upper bound on the partial objective function, as in Eq. (3.7). Very often there is the 
need to prune the domain on the basis of a criterion that is different from the 
objective function. 

More generally, it is possible to prune the solution space more effectively if the 
pruning criterion is different from the objective function used to identify the sub-
domains iD . The reason for using a different function for searching and pruning 
will be more clear in the following, and it is due to the fact that solution subsets can 
be removed not only because of the high value of if , but also because of other 
additional undesired properties. 

The most noticeable example of this situation is when, still willing to minimise 
the , some solutions have a transfer time that is too long. In this case, there is no 
point in keeping all the solutions that exceed the total allowed transfer time. Thus, 
at any level, the solutions should be pruned according to their value of  and 
transfer time. The search, on the other hand, is performed trying to achieve 
solutions with minimum . 

v

v

v
In addition, in the real case, the best transfer is not only minimising the : 

very often, other parameters shall be taken into account, like the total time of flight, 
the relative velocity with respect to the arrival planet, the inclination, the radius of 
pericentre and the period of the final orbit, and so on. 

v

For these reasons, a more general framework has been developed. Some 
assumptions are released, in order to make the method more versatile. Even if 
Bellman’s principle of optimality might not rigorously hold anymore, it will be 
shown that the method is still capable of providing good results. 
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First of all, the requirements in Eq. (3.3) and (3.4) are relaxed, i.e. the objective 
function does not need to be the sum of non-negative terms. Then, the feasible set is 
defined by a generalisation of Eq. (3.6), as: 

   |i i i i iD D  x x  (3.10) 

where the pruning criterion  i i x  is a property common to all the solutions in the 

set. Definition (3.10) includes the ideal case when f  and if  have property (3.3) 

and i i if f   . 

3.2.4 Application to MGA 
The procedure presented in the previous section can be easily applied to the velocity 
formulation of the MGA trajectory problem, in the way that is presented here. 

Let us consider an interplanetary transfer with  interplanetary legs, and 

with a given sequence of planetary swing-bys, starting with a launch. If the velocity 
formulation is used, then the solution vector associated to the trajectory is the one 
shown in Eq. 

legsn

(2.17). 

 
0 0 1 1 1 ,1 2 2

, 1 1 1 , 1
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r T r T

    

      

 



x
 

Also let us consider the problem, very common in preliminary mission design, 
of minimising the total change in velocity of the spacecraft, provided by the high-
thrust engine. Using the model proposed above, in any of the transfer cases, the 
design of a multi-gravity assist transfer can be transcribed into a general nonlinear 
programming problem, with simple box constraints. Since, according to the model, 
the engine is used at launch, in each DSM, and possibly at the final orbit insertion 
(or rendezvous), then the objective of this problem is to find: 

   0
1

min
legsn

k f
k

f v v v


 
    

 
x  (3.11) 

The generic  in Eq. iv (3.11) can be computed once the trajectory is completed 
up to leg i. This means that only the part of the solution vector  concerning legs 1 
to i is needed, and the same value is independent of the variables associated to legs 

 to . This allows splitting the problem into levels: level 1 refers to the part 

of trajectory from first planet to the second planet; each of the following levels 
takes into account a swing-by and the subsequent leg – including a DSM – to reach 
the next planet. So the subdivision of the domain into levels, as shown in 

x

1i  legsn

Table 3.1 
can be considered. The variables related to each level are different, depending on 
how the trajectory starts, remembering the velocity formulation. 
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Table 3.1. Levels and related variables. 
Variables 

Level 
Initial free launch Initial ballistic arc Initial swing-by 

Domain 

1 0v , 0t ,  , 1 , 1T  0t ,  1T 1 , , ,1pr 1 ,  1T ,1LD  , 

2 1 , ,1pr , 2 , 2T  1 , ,1pr , 2 , 2T  2 , ,2pr , 2 , 2T  ,2LD  

… … … … … 

i 1i  , pr , 1i , i , iT  1i  , , 1pr i , i , iT  i , ,pr i , i , iT  ,L iD  

 
Physically, this subdivision corresponds to breaking the trajectory into legs, 

and 

into levels is arbitrary, but it allows having one (and only one) 
man

e to the objective function chosen in Eq. (3.11), it is straightforward to 
choo

 

at each level, to consider the entire trajectory up to the leg corresponding to the 
level under exam. 

This division 
oeuvre for each level, regardless the type of transfer (initial free launch, initial 

ballistic arc, initial swing-by). Generally, this is the DSM. In the specific case of 
transfer with initial ballistic arc, there is no DSM on the first leg, but the launch 
excess velocity plays the same role. The reason for this choice is that the manoeuvre 
magnitude will be one of the main criteria which will be used to prune the solution 
space. 

Du
se, as partial objective functions, one of the following: 

i

1 1,..., 1i k
k legs

i i

f v
i n

f v


 
 

 

  (3.12) 

and since the change in velocity is intended in magnitude, it results that the 

hat the evaluation of the partial objective functions (3.12) requires the 
com

condition (3.4) on the positivity is satisfied. Without any substantial change, it is 
also possible to optionally include the terms due to the launch and the final 
insertion. 

Note t
putation of i Lambert arcs and i analytical propagations. Therefore, the 

evaluation of a trajectory (or specifically its v , or other cost functions) is 
computationally cheaper than evaluating the whole solution. 

The total amount of v  provided by the engine in each manoeuvre, and during 
each phase of the mission, is usually limited by constraints on the engine and 
availability of fuel. Then, it is the first choice to define, as a pruning criterion for 
each level, an upper bound on the v . This condition allows to prune all the 
solutions that exceed that amount of change in velocity, even at early legs, since 
they are not feasible. Obviously this bound is not clearly defined at early stages of 
mission design, but as it will be shown later in this work, very conservative (high) 
thresholds are enough to prune substantially the search space. 

Again, this has a direct physical meaning: the incremental pruning starts by 
considering one leg only of the trajectory, from launch to the first planetary swing-
by. For this leg, all trajectories are discarded when the change in velocity required 
to meet the following planet is too high. Certainly, if the first leg of the trajectory is 
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unfeasible, then it does not make sense to continue: thus the idea of discarding all 
the trajectories which start with an unfeasible leg. This process corresponds to 
pruning the solution space of the first level, and not consider it anymore for the 
following levels. The second level is ideally composed by the first swing-by of the 
sequence, together with the second interplanetary leg. The second DSM is added to 
the partial objective function, which is used to prune the search space. The process 
continues, by incrementally adding legs to the trajectory, and removing unfeasible 
parts of the domain (hence the name of incremental pruning). 

The subdivision into levels proposed in Table 3.1 is certainly not the only 
possible one. Note that each swing-by is an event on its own, and can be computed, 
giving the initial conditions, through the two variables ,pr  . If each swing-by and 

each deep space flight leg are considered as independent levels, then the subdivision 
shown in Table 3.2 can be adopted. Since the swing-by is unpowered in this model, 
no value of v  is added at the levels of swing-bys. Therefore, if some pruning is to 
be achieved, ferent pruning functions, other than an upper bound on the v , are 
to be used. 

 

 dif

Tabl 3.2. Levels, variables and corresponding domains, when considering each deep e 
space flight leg and each swing-by as different levels. 

Level Variables Domain 

1 0t ,  ,  , 1 , 1T  ,1LD  

2 1 , ,1p  r ,2LD  

3 2 ,  2T ,3LD  

4 2 , r  ,2p ,4LD  

… … … 

i   – 1 1i  , p ir , 1  , 1L iD   

i i , iT  ,L iD  

3.2.5 Discussion 
he next section, it is worthwhile to examine some of the 

 is that a complete solution to 
the 

jective functions that are used to prune the search space associated to 
each

 
Before proceeding to t
characteristics of the proposed incremental approach. 

One key assumption of the incremental approach
MGA problem, i.e. a complete trajectory, can be built by adding individual 

trajectory legs, starting from departure to the arrival or vice versa. Therefore, 
although the global minimum of each sub-problem does not represent the global 
minimum of the whole problem, we can build the solution space of the whole 
problem by incrementally adding up the search spaces associated to each sub-
problem in such a way that the resulting total search space contains the global 
minimum. 

The ob
 sub-problem do not directly depend on the chosen objective function for the 

whole problem. Therefore, the incremental approach is independent of the objective 
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function of the whole problem, but is strongly dependent on the characteristics of 
the trajectory model. 

In particular, for the trajectory model in velocity formulation, which will be 
used in the following, the partial objective function (and pruning criterion) 
associated to each sub-problem cannot be evaluated without considering all the 
previous levels. This represents a fundamental difference with respect to what was 
done in [59], by using the position formulation of the MGA problem. In fact, a 
trajectory model in which gravity manoeuvres are modelled as powered swing-bys 
does not need to build the whole solution incrementally (or as a cascade of sub-
problems) but each sub-problem can be tackled in parallel with the others. 
Furthermore, in the proposed incremental approach, the search space is constructed 
incrementally, therefore the number of dimensions of each sub-problem increases as 
a new level is added to the list. On the other hand, the number of dimensions of 
each sub-problem in [59] remains constant throughout the whole pruning process. 

Furthermore, conceptually, this approach can be equally applied to the position 
formulation without modification if we assume that the feasible set is made of those 
solutions that satisfy the constraints and have if  is below a given threshold. It can 
also be applied to the block approach, without any substantial modification. 

3.3 Incremental Pruning with Systematic 
Search on a Grid 

For the purpose of showing how the incremental pruning process works, at first a 
very simple implementation of it will be introduced. As a search method for 
defining the feasible sets at each level, a systematic grid search will be used. 
Although quite inefficient, this method is ideal to show the effectiveness of the 
incremental pruning, for at least two different reasons. Firstly, it is fully 
deterministic, thus repeated runs of the algorithm provide identical results. 
Secondly, the grid search guarantees to find all the existing solutions in the domain, 
as long as the grid is fine enough. 

In order to perform the grid search, the intervals defining the domain D on each 
coordinate  l u ix x , for  are divided into 1,...,i  n ip  sub-intervals: this means that 

the whole domain of D  is divided into 
1

n

i
i

p

  hyper-rectangles. Let us call each one 

of these hyper-rectangles a node (Fig. 3.2). Modern techniques exist to estimate the 
minimum value of a function given some sample points, for example by building 
surrogate models of the function [109]. These methods go beyond the scope of this 
test case. In fact, if we simply assume that the mesh is fine enough, together with a 
finite value of the Lipschitz constant, then it is implied that one sample in each node 
(i.e. the middle point) is a good approximation of the value of if . 

After the discretisation, the feasible set, at each level, becomes a set of nodes, 
which can be enumerated. If no pruning is performed at a generic level i, i.e. all the 
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nodes are considered, the total number of nodes is 
1

iD

l
l

p

 , where   is the 

dimensionality of the domain. Starting from the second level, and considering that 
the level  has been pruned, the number of nodes at level i reduces to: 1i 

 
1

, , 1
1

,
i

i

D

nodes i nodes i l
l D

n n p i



 

2   (3.13) 

where , 1nodes in   is the number of nodes that survived after pruning level . Since, 

due to the pruning, it results that: 

1i 

 
1

, 1
1

, 2
iD

nodes i l
l

n p





i  , 

then pruning reduces the number of nodes to be considered at the following level. If 
the pruning at level  is effective, the number of evaluations at level i can be 
substantially reduced. 

1i 

 
 

Level 1 

Level 2 

Level 3 

,1 1 2 2, , ,pr T     

0 0 1 1, , , ,t v T    

,2 2 3 3, , ,pr T     
 

Fig. 3.2. Tree representation of a MGA trajectory: each node is a stage composing 
the trajectory. 

3.3.1 Test Case 
Consider a transfer from Earth to Jupiter via Venus, Earth, Earth swing-bys. We 
consider no DSM in the first leg (and thus the first leg is a ballistic arc), and the 
subdivision into levels shown in Table 3.2. 

The domain bounds and the number of intervals for each variable are shown in 
Table 3.3. These bounds have been chosen because from [41] it is know that they 
define a domain D that contains an optimal solution. 

The hyperbola pericentre radius  is normalised with respect to the radius of 

the planet at which the swing-by is performed, and the intervals for this variable are 
not equally spaced over the domain, but they are smaller for low values of the 
radius. This is done because the outgoing velocity from a swing-by is much more 
sensitive to the variation of the radius, when the radius is small, than when it is 
large. This choice allowed the use of fewer intervals for the variable . 

pr

pr
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Table 3.3. Domain bounds and number of intervals for each variable. 

Level Variable 
Lower 
bound 

Upper bound No. of intervals ( ip ) 

0t , MJD2000 3159 3559 19 
1 

1T , d 120.4 220.4 19 

2 , rad 2.742 3.789 19 
2 

,2pr  1.672 2.272 9 

2  0.01197 0.2619 19 
3 

2T , d 220.2 420.2 19 

3 , rad 2.127 3.174 19 
4 

,3pr  1.466 2.066 9 

3  0.01728 0.2772 19 
5 

3T , d 630.4 830.4 19 

4 , rad 2.638 3.685 19 
6 

,4pr  1.312 1.912 9 

4  0.01740 0.3074 19 
7 

4T , d 747.0 947.0 19 
 
Considering the first level of the problem only, it is possible to plot what is 

commonly called pork chop plot, that is a plot of the v  needed at the first planet 
(in this case, Earth) in order to reach the second planed (Venus) as a function of the 
starting date 0  and the time of flight 1  (t T Fig. 3.3). The grid in the plot is 
representative of the intervals in which the domain has been divided into: each 
hyper-rectangle of the grid is a node, and it is represented by its middle point. In 
this example, the function has been evaluated once, for each node, in the centre of 
the corresponding sub-domain. 

If the solution space of the first level is pruned as shown before, setting a 
pruning criterion: 

  1 1 5 km/sv    , 

the algorithm removes all the parts of this domain which exceed this limit. The only 
remaining areas are shown in Fig. 3.4. 
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Fig. 3.3. Level 1, no pruning done. Transfer cost (Δv) as a function of departure 

time t0 and time of flight T1. The black dots represent the grid sample 
points. 
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Fig. 3.4. Level 1, after pruning. Transfer cost (Δv) as a function of departure time t0 

and time of flight T1. Only feasible nodes have been plotted. 
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The coloured areas in Fig. 3.4 represent the domain that survived after pruning 
at first level 1D . The second level is a swing-by, thus the v  is not a good pruning 
criterion. Instead, by considering the aim of this particular swing-by, that is to 
increase the semimajor axis of the transfer orbit, it is possible to prune the second 
level by requiring that the Venus swing-by increases the semimajor axis by at least 
27,986,077 km. That is: 

  2 27986077 km/sa     

where  is the difference between the semimajor axis before and after the swing-
by of Venus. This quantity can easily be computed as the swing-by fully determines 
the conditions of the outgoing heliocentric orbit. The numerical value for pruning 
has been set from the various data in literature about similar trajectories [

a

v

41, 74]. 
Then, since in the third level there is an impulsive manoeuvre, the criterion is a 
limit on : 2

  3 2 0.5 km/sv    . 

The value is suitable for a DSM. The results of the pruning up to level 3, with these 
criteria, are shown in Fig. 3.5 to Fig. 3.7. Fig. 3.5 shows the pork chop plot of the 
first two variables. The number of feasible nodes is clearly decreased with respect 
to Fig. 3.4. This is due to the fact that the pruning of levels 2 and 3 has made part of 
the nodes at level 1 infeasible. The infeasible nodes are then removed from level 1 
according to the back pruning strategy explained in Section 3.2.2. 
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Fig. 3.5. Level 1, after pruning up to level 3. Transfer cost (Δv) as a function of 

departure time and time of flight. Only feasible nodes have been plotted. 
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Fig. 3.6. Level 2, after pruning up to level 3. Increment of semimajor axis (Δa) due 

to the swing-by of Venus, as a function of the rotation angle and the 
hyperbola pericentre radius. Only feasible nodes have been plotted. 
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Fig. 3.7. Level 3, after pruning up to level 3. Cost of the deep space manoeuvre (Δv) 

as a function of the DSM position α2 and time of flight T2. Only feasible 
nodes are plotted. 
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In Fig. 3.6, the increment of the semimajor axis due to the Venus fly-by is 
represented, as a function of the variables of the second level, and fixed the values 
of the first level, as , 0 3359 d, MJD2000t  1 170.5 dT  . 

By fixing also the values of the variables of the second level ( 2 3.265 rad 

2

, 

), the  of the third level can be plot as a function of ,2 2.090pr  2v   and  (2T

2

Fig. 

3.7). The plot highlights that only nodes with a of about 320 days have survived 
the pruning process. Furthermore, the timing of the DSM is not particularly 
important for pruning the solution space, as almost any value of 

2T

  within the 
considered global bounds generates at least one solution, which satisfies all pruning 
criteria. 

The whole search space can be pruned down, until to the last, level by 
continuing this process of incremental and backward pruning. Fig. 3.8 represents 
one of the possible feasible trajectories. The solution in Fig. 3.8 corresponds to the 
following solution vector: 

  





3359,170.5,

3.265,2.090,0.05802,320.2,

2.651,1.766,0.06517,730.4,

3.162,1.612,0.02503,941.8

x
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Fig. 3.8. One of the feasible trajectories after the pruning of the whole domain. 
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The total v  of this trajectory is about 5.34 km/s, without considering any 
capture manoeuvre at Jupiter. As a comparison, the best known solution, for the 
specified bounds, requires 4.84 km/s. It is worth to note that no search for locally 
optimal solution was performed: the solution in Fig. 3.8 was found only as the 
result of the systematic search over all the nodes survived to the pruning process. 

3.3.2 Algorithmic Complexity Analysis 
The computational complexity of the incremental pruning method presented above 
is dictated by the number of nodes that need to be evaluated. If no pruning is 
performed at the first level then all the nodes have to be evaluated. The total 
number of evaluations is simply: 

  
1

,1
1

D

nodes l
l

n p


  

If pruning is applied the number reduces to ,1 ,1nodes nodesn n . The number of 

function evaluations at the following level 1i   is computed recursively through 
Eq. (3.13) as a function of the remaining nodes at level i. This implies that, 
depending on the efficiency of the pruning, the total number of function evaluations 
used by the pruning process could be higher than the number of function 
evaluations needed to scan the whole grid of the complete problem, that is: 

 ,
1

legs

n

nodes n i
i

n


 p  (3.14) 

In fact, if for example we consider the extreme case when no node is removed 
at any level, then the total number of function evaluations through the incremental 
approach is 

 
1 2

1 1 1

...
D D n

l l
l l l

lp p p
  

      

that is certainly bigger than the number of function evaluations needed if a 
systematic scan is performed on the whole problem (Eq. (3.14)). 

Again it is worthwhile reminding that even if the number of function 
evaluations in the incremental pruning is higher, still the total computational time 
needed by the process can be lower, due to the fact that function evaluations at early 
levels are less expensive. Of course, at this stage and due to the number of 
parameters involved in the problem, it is difficult to determine if and when the 
incremental pruning process is beneficial. Specific tests in following sections will 
show the benefit of the incremental pruning. 
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3.4 Identification of the Feasible Set 

In Section 3.3, the search for the feasible set was performed with a systematic 
search. Although this method presents some advantages (namely determinism and 
completeness of the search within grid accuracy), its algorithmic complexity is 
exponential with problem dimensions. Furthermore, if a coarse grid and a bland 
pruning are used, many optimal solutions are likely to be lost; on the other hand, if 
a sufficiently fine grid is used, together with an aggressive pruning, the 
computational time becomes quickly unacceptable even for a limited number of 
planetary swing-bys. 

A solution to this problem is to use a search method that uses some heuristics 
to improve the search, rather than systematically sampling all the points on a grid. 
The search method can also assume some properties of the function, like continuity 
or differentiability, to compute the best search direction. In the following, a number 
of optimisers for single objective optimisation will be used to search and identify 
the feasible sets. 

Although dropping the grid search removes an exponentially complex step in 
the search for the feasible set, it also removes the exhaustiveness of the search. 
Common algorithms for single objective optimisation, in fact, identify a limited 
number of feasible local minima. These points belong to the feasible set, but do not 
necessarily characterise it completely. Therefore, there is the need for converting a 
finite set of feasible points (provided by the optimiser) into a feasible region (that 
can be used in the incremental process). 

A further difficulty in the identification, and use, of the feasible set, at a given 
level, is its shape. In fact, the representation and storage of an n-dimensional 
disconnected set of arbitrary shape is a very demanding process which would 
increase the computational load and the memory storage of the residual space. 

Therefore, it was decided to define all the feasible sets as a collection of hyper-
rectangles in the search space. The hyper-rectangles, or boxes for simplicity, have 
their edges aligned with the axes of the domain, such that simple box constraints 
can be used to define each box. Furthermore, the boxes are not necessarily part of a 
regular grid, but their position and size is in principle free in the search space (to 
achieve a tight enclosure of the feasible region). 

In the following sections, different methods to define the feasible set at each 
level will be explained. In particular, one section will describe the optimisers used 
to search for feasible points in the search space, then a section will follow with 
different methods for clustering the solution into boxes. These two parts of the 
process are distinct, as in principle any optimiser and any box creation method can 
be used for a given problem. 

3.4.1 Exploration of the Search Space 
In this section, the search methods used to identify feasible points will be 
illustrated. We assume that the search is performed on a box-constrained search 
space. This assumption is consistent with all the techniques, which will be used to 
generate the feasible set. The search methods will be applied either to a single box 
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containing a subset of the whole search space, or to a collection of all the boxes 
containing feasible regions.  

MULTI-START SEARCH 
A very simple global optimisation procedure can be created by iterating several 
local minimisations in different points of the search space. This technique is known 
as Multi-Start (MS) search. There exist a number of variations of this method, 
including different heuristics for the selection of the starting points, and different 
algorithms for the local search [110]. 

For this work, a simple implementation of a Multi-Start technique was used. Its 
simplicity may cause some concerns, as nowadays powerful advanced global 
optimisers exist, but the point here is to prove the effectiveness of the incremental 
pruning method, and not strictly the optimiser itself. Furthermore, the simplicity of 
the optimiser itself allows us to focus on the incremental method, rather than on 
tuning the many parameters of other more complex optimisers. 

Each Multi-Start-based technique has two phases: the first one, which can be 
considered a global search, is determining the starting points for the subsequent 
local optimisations, which will be performed in the second phase. If no additional 
knowledge of the domain is available, the starting points (or samples) are 
distributed uniformly in the whole search space. The uniform distribution is a very 
common choice among all the population based optimisers. The number of samples 
used, n, is a key parameter of the optimisation process. The objective function is 
then evaluated in each one of the samples. The samples are sorted according to the 
value of the objective. The best m n  samples are selected and used as a first guess 
for starting m local optimisations. This second step has the task of finding the local 
minimum in the closest basin of attraction, and a gradient-based method is generally 
used. In this work, the function fmincon (which is an implementation of Sequential 
Quadratic Programming, SQP) in the Optimization Toolbox of MATLAB® is 
utilised. 

Gradient based methods require the differentiability of the objective function, 
which is not always the case for the applications that we will present, in particular 
when a space transformation is applied. We can still assume that the function is 
generally differentiable and discontinuities are limited and can be avoided by 
random sampling. 

The local optimisation process is an iterative algorithm that tries to reach the 
bottom of the basin of attraction of a local minimum. The solution moves iteratively 
towards the minimum, having a lower objective value at each iteration. Since the 
aim of the search is not to find the local minimum, but to find the feasible set, we 
are not interested in fully converging. Instead, we can stop the optimisation as soon 
as the current point has a function value that is lower than a given threshold. The 
motivation to this can be found very easily remembering the ideal case presented in 
Section 3.2.4. If the partial objective function is a sum of v , and the pruning 
criterion is an upper bound of this sum, the condition mentioned before is 
equivalent to stopping the optimisation as soon as a feasible point is found. This 
trick has two benefits: the first is that it saves a large number of function 
evaluations: in fact, it is generally true that a local optimiser spends a lot of 
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computational power to refine to high precision the position of the minimum, but 
for the pruning, we are not interested in that. The second advantage is that it allows 
having feasible points which are sparse in the feasible set, without accumulating at 
the local minimum. This is necessary to identify correctly the whole feasible set. 

MODIFIED MONOTONIC BASIN HOPPING 
A more sophisticated search method can be derived from Monotonic Basin 
Hopping. MBH was first applied to special global optimisation problems, the 
molecular conformation ones [111], and later extended to general global 
optimisation problems [112]. In its basic version it is quite similar to the Multi-
Start. It is also based on multiple local searches and the only difference is 
represented by the distribution of the starting points for local searches: while in 
Multi-Start these are randomly generated over the whole feasible region, in MBH 

they are generated in a neighbourhood  N x  of the current local minimiser . 

The modified MBH is described in 

x

Algorithm 3.1. 
 
Algorithm 3.1. Modified MBH. 

 1:  Select x in , initialize iD 0, 0eval trialsn n   

 2: Run local optimiser from x to local minimum x  

 3: Select a candidate point  ,c lN x x

1ials

; 

  Update ;evaln trials trn n   

 4: If  ,trials trials maxn n
 5:  goto Step 1 
 6: End If 
 7: If  Then ( )i i x

 8:   feas feas cL L  x ; goto Step 3 

 9: End If 
 10: Run local optimiser from , update  c n

x x ew evaln

 11: If    i new if f x x  Then  

 12:   new
 x x

 13: If ( )i i x  

 14:   feas feasL L   x  

 15: End If 

 16:  If    i new if f x x  

 17:    0n trials

 18:   End If 
 19: End If 
 20: Termination Unless , goto Step 3 eval maxn n
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More in detail, given a local minimum x  and a neighbourhood of this local 

minimum  , l iN D x , with radius l , MBH selects a random point 

 ,c N l
x x

x

 and runs a local optimisation. If the new local minimum  

obtained starting from the candidate point  is better (i.e. lower value of the 

objective function) than , then new

new
x

cx
 x x . MBH saves only the local best and 

therefore would be unusable to explore the feasible set once one point is identified. 
Therefore, MBH was modified to store all candidate local optimal points  or  

that satisfy the conditions . 
cx new

x

( )i ix
The modified MBH was complemented with a restart of the process after a 

number  of local trials. This restart is fundamental to avoid stagnation and 

coverage only of one portion of the feasible set when the feasible set is 
disconnected. 

,trials maxn

 

MODIFIED MULTI-AGENT COLLABORATIVE SEARCH 
The third technique used in this thesis is an evolutionary based one derived from the 
Multi-Agent Collaborative Search (MACS) described in [66]. Unlike MS and 
MBH, it is derivative free. The basic idea underneath the Multi-Agent Collaborative 
Search is to assign the task of looking for a set of solutions to a population P of 
agents that performs a combination of local and global searches. An agent is 

identified by a solution vector jx , a sub-region of the search space  ,j j iN D x , 

and a local search operator, or individualistic behaviour function  ,j trialsB nx  that 

generates  samples trialsn ,j lx  such that  , ,j l jN jx x

cP

. At every generation g a 

communication operator recombines pair-wise the agents in the current population 
 and generates a new candidate population  made of solution points gP ,j cx . A 

greedy selection operator selects only the solutions in c  that improve the solutions 

in  and updates . Before applying the communication operator, the points in 

g  that satisfy condition  are stored in an archive 

P

gP gP

P ( x )i i feas . After the 

communication operator, the local search operator is applied to the best 

 agents. All the sample points 

L

popration popn  , ,j l N j jx x  satisfying condition 

 are stored in the archive (i x )i feasL . The overall MACS is presented in Algorithm 

3.2. 
Furthermore, in order to facilitate the local exploration in a neighbourhood of a 

feasible solution without any modification to the two search algorithms, we 
assigned the value -2 to the objective function of all the feasible solutions. 
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Algorithm 3.2. Modified MACS. 
 1:  Initialize a population  in , with  agents, initialize  0P iD popn 0, 0evaln g 

 2:  j gP x , If  Then ( )i i x

 3:    feas feas jL L  x  

 4:  End If 
 5:  Apply communication operator: ; : g ccom P P eval eval popn n n   

 6:  Apply greedy selection operator: 
  ,,j g j j c cP P   x x x  if ,( ) ( )j c jf fx x , for 1,..., popj n  

 7:  Rank the population  gP

 8:  Apply local search operator to the best  agents in : popration gP

  j gP x  generate  candidate points trialsn  , ,j l jN jx x ; 

  n n  eval eval popn  ratio trialsn

 9:  Apply greedy selection operator: 

     , ,, for 1,..., and 1,..., , ifj j l popratio trials i j l i jj n l n f f   x x x x  

 10:  If Then ( )i i x

 11:    ,feas feas p lL L  x  

 12:  End If 
 13:   1 ; 1g gP P g g   

 14:  If 
,

, ,maxj k g j k conv
j k

P t   x x x x ol  Then 

 15:   Restart the worse of the two 
 16:  End If 
 17:  Termination Unless , goto Step 5 ,eval eval maxn n

 
For MACS we adopted a restart technique similar to modified MBH, but the 

domain i  is partitioned in sub-domains at every restart and MACS is restarted 

within a sub-domain. The domain i  is partitioned by dividing in two parts one 
coordinate belonging to a subset of the coordinates at level i (for example only the 
second and the third coordinate are divided while the others remain unchanged). At 
each restart, the coordinate with the longest edge is cut in two parts generating two 
new sub-domains. For each sub-domain we evaluate the two criterion vector: 

D

D

 
,

,

, q

q q

i

feas D

D D
feas D

n
V

n

 
  
  

ψ  (3.15) 

where  is the volume of the sub-domain 
qDV qD  and , ,q ifeas D feas Dn n  is the ratio 

between the feasible solutions , qfeas Dn  in q iD D , such that i q
q

D D , and the 
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total number of feasible solutions , ifeas Dn  in . For each sub-domain we evaluate 

its Pareto optimality with respect to the criteria vector in Eq. 
iD

(3.15) by computing 
the dominance index: 

    |d q jD  qI D j D  (3.16) 

where  is the cardinality of the set and a sub-domain dominates another when 

both criteria are better, i.e. 

| . |

j q j i q ij q D D D D DD D V V n n n n D    . 

 

Furthermore, we count the number of subdivisions  d qp D o not produce 

any increase in the number of feasible solutions. For example, assume that the 
number of feasible solutions in iD  100 and that we subdivide D  in 

 that d

is i qD  and 

1qD  ; then the subdivision index for each of the sub-domains is increased by one 

unit. After selecting one of the two, we run MACS, if the number of feasible 
solutions is higher than 100, then dp  is set to 0. In order to select a sub-domain 
where we want to restart MACS, we use the cumulative quality index 

     qI Dq d q d qI D p D  . If more sub-domains have the same quality index we 

pick one randomly among them. 

3.4.2 Clustering of the Solutions 
The search for the feasible solutions at each level ends with a number of points, the 
objective value of which is below a given threshold (feasible points). The following 
step is to identify and bound the feasible set, i.e. the regions of the search space that 
have not been pruned. 

This section will show the techniques to generate the feasible set, defined as a 
set of hyper-boxes, starting from a set of feasible points given by one of the search 
techniques described above. Four different methods will be presented that were 
developed and used throughout this thesis. Each one has advantages and drawbacks. 

METHOD 1: ENVELOPING BOXES 
This first basic method was developed for preliminary tests. The idea behind this 
method is based on the assumption that the global optimum of the complete 
problem is in the vicinity of one of the local optima of each level.  

Therefore, following this assumption, one box is generated for each feasible 
point found; the solution is centred in the corresponding box; all the boxes have the 
same size, which is defined a priori by the user. The boxes can go out of the global 
bounds of the problem. In that case, the box is shrunk to fit inside the domain. 

If two feasible points are close each other, then the two corresponding boxes 
generated from them will be overlapping. In principle, the feasible set does not take 
into account overlapping, but since the boxes are treated as different spaces in the 
following levels, then the search space in the overlapped part is searched multiple 
times. This is not a real issue, as multiple overlapping boxes correspond to multiple 
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local minima at close distance. Thus, the surrounding search space is worth being 
investigated. The drawback is that the number of boxes equals the number of 
feasible solutions, and thus can become very high. In particular, an exhaustive 
search requires a high number of solutions, but this generates a lot of boxes. The 
high number of boxes can become problematic for problems with more than 2 
levels, due to the number of subsequent optimisations needed. Fig. 3.9 shows an 
example of boxes generated with this method, given the solutions represented with 
a red dot. 

 

 
Fig. 3.9. Generation of the boxes by enveloping each solution (method 1). As it can 

be seen from this example, boxes overlap consistently along the T = 365 d 
line, where several solutions have been found. Also, solutions at the border 
of the search space generate smaller boxes, as the boxes cannot exceed the 
global bounds. 

METHOD 2: BOXES ON A GRID 
This second method was designed to limit the number of boxes that were created 
using method 1, i.e. to avoid to create one box for each feasible solution found. In 
this way, an extensive search, which provides a high number of feasible solutions, 
can be performed, still keeping the number of resulting boxes reasonable. 

Similarly to what happens by using a grid search, all the boxes lay on a grid 
with pre-defined spacing. Each box is selected if and only if contains a feasible 
solution. If a box contains more than one solution, it is still considered only once. In 
this way, overlapping of the boxes is not possible, and the union of the resulting 
boxes represents the feasible set exactly once, without repetitions. 
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Fig. 3.10. Generation of the boxes by choosing boxes on a grid (method 2). This 

example of clustering highlights that a coarser grid along dimension α 
could considerably reduce the number of boxes without increasing the size 
of the feasible set. 

 
The main problem of this method is once again the resolution of the grid, 

which has to be chosen a priori. In fact, despite a fine grid is advisable to identify in 
detail the areas of the feasible set, a large number of boxes will be generated. On 
the other hand, a coarse grid will result in a not very effective pruning. Fig. 3.10 
shows an example of boxes generated with this second method. 

METHOD 3: BOXES ON A GRID AND WRAPPING 
This third method is in fact an extension of method 2. The idea to overcome the 
drawback of high number of boxes generated is to collect within a bigger box all the 
boxes that share one side in the multi-dimensional space. In this way, all the boxes 
that are aligned along a given axis, for example as in Fig. 3.10, would become a 
single box. The aim of the last step is not only to reduce the number of the boxes, 
but also to envelope in one box the regions in which there are many local minima 
close one another, preserving the local and adjacent structures of the solution space. 
Fig. 3.11 and Fig. 3.12 show the last phase of the box creation process, for an ideal 
two-dimensional and three-dimensional space respectively. In plots (a), the boxes 
generated by through method 3 are shown, together with the feasible points used as 
a start. Method 3 reduces the number of boxes by enveloping adjacent ones like in 
plots (b). 
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 (a) Box creation (b) Box enveloping 

Fig. 3.11. The box creation process according to method 4, a two-dimensional space. 
In (a), the boxes as created by method 3. In (b) is the application of method 
4: adjacent boxes are enveloped, and the number of boxes decreases. 

 

 

 (a) Box creation (b) Box enveloping 

Fig. 3.12. The box creation process according to method 3, a three-dimensional 
space. In (a), the boxes as created by method 2. In (b) is the application of 
method 4: adjacent boxes are enveloped, and the number of boxes 
decreases. 

METHOD 4: MEAN SHIFT CLUSTERING 
This last method makes use of a clustering algorithm to identify the sets of points 
that belong to the same feasible regions in the search space. In the following we 
will use the Mean Shift clustering algorithm [113]. The Mean Shift clustering takes 
a number of points as an input in an n-dimensional space and returns which point 
belongs to each cluster. The number of clusters that are generated for a given set of 
input points is not pre-defined, but is controlled by a single parameter, the 
bandwidth, that has to be provided by the user. The relative distance among the 
points determines to which cluster each point belongs to. 

It is to underline that the algorithm as presented in the paper exploits a few 
iterations of a non-deterministic optimisation process, and thus the resulting 
clustering can differ slightly from run to run. 
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Fig. 3.13. Representation of a two-dimensional search space, with feasible solutions 

and boxes which envelope the solutions and generate a feasible region. 
 
The Mean Shift clustering method itself does not provide any feasible set, but 

only clusters for the feasible points. If the search is exhaustive, we can assume that 
the feasible points are well distributed among the feasible set that we are 
investigating. Under this assumption, we can state that each cluster identified by the 
Mean Shift clustering method is a connected feasible region in the search space. At 
this point it comes again the problem of describing a region given a finite set of 
points. Some further assumptions can be taken, for example that each region is 
convex. This will generate a set of convex hulls, each of those can be described 
with a set of inequalities. Since we would like to define the feasible space as a set of 
hyper-boxes, then we simply envelope each one of the clusters by the smallest box. 
This certainly implies that a bigger feasible set is considered with respect, for 
example, to consider convex hulls, but the choice is conservative, in the sense that 
less search space is pruned out. 

Fig. 3.13 shows a set of feasible solutions and the corresponding boxes in a 
two-dimensional space. The figure highlights that the boxes cover some regions in 
which no feasible point was found. Additionally, it is worth noting that the boxes 
generated with this method can overlap. 

REMARKS 

The previous methods can be applied level by level, on the space ,L iD , or on the 

entire solution space up to the current level, . In the former case, the boxing 

procedure is only applied to the level under consideration, on the variables , and 
iD

,L ix
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it generates the boxes in the space ,L iD . The union of those boxes is nonetheless the 

non-pruned space ,L iD  defined in Eq. (3.5). To obtain the feasible set at level i, iD , 

the boxes shall be considered together with the boxes at the previous levels 1... . 
Since the boxes are defined on the spaces 

1i 
,L iD , independently, there is no relation 

between one box at level i and another one at level j. The resulting feasible space, 
then, is generated by considering all the possible combinations of boxes for all the 
levels of the problem, or alternatively, considering a space which is generated by 
collecting all the boxes together (see Appendix C for details). 

In the latter case, instead, the boxing procedure is applied directly to the whole 
space up to the level, . This corresponds to what is presented in Eq. iD

D

(3.9). 
Therefore, the resulting boxes are defined across all the levels, and each box has the 
same dimensionality of i . Therefore, the search space after the pruning iD  is 
simply the union of the hyper-rectangles defined by the boxes. This comes at the 
cost of having a clustering process on a space with higher dimensions. 

3.5 Selection of the Planetary Sequence 

A multiple swing-by trajectory is fully characterised given the sequence of 
planetary encounters, the departure date, the launch characteristics and a set of other 
parameters defining the timing and the characteristics of each swing-by. 

The choice and the order of planets to swing-by are of great importance, as 
they change the trajectory completely. It follows that a proper selection of the 
planetary swing-bys is essential, and shall be done before or together with the 
optimisation of all the other continuous parameters characterising the trajectory. 
Furthermore, tackling the selection of a sequence with a standard optimisation 
approach is tricky, due to the discrete nature of the variables involved, and to the 
fact that, once a sequence is chosen, a global optimisation has to be performed in 
order to assess whether the sequence is promising or not. In addition, the number of 
different possible sequences of planetary swing-bys for an interplanetary transfer 
can be very high, which forbids to find an optimal trajectory for each one of them. 
In Chapter 5, the integrated search of the planetary sequence and the trajectory will 
be studied, by means of a novel approach based on Ant Colony Optimization. In 
this chapter, instead, the work is based on a two-level approach, in which the 
incremental pruning works at the lower level on a planetary sequence defined at the 
higher level. 

Here we present a technique that provides a small set of candidate sequences, 
which can then be optimised through the incremental pruning. This technique is 
based on a simplified trajectory model, combined with a set of heuristic rules, 
which discard trivial sequences. 

The simplified model allows a very quick assessment of all possible sequences. 
Since the simplified model is conservative, meaning that it gives an optimistic 
evaluation of each trajectory, it is possible to discard all the sequences which do not 
satisfy certain requirements (or are not feasible at all) in a very short time, without 
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the possibility of discarding promising ones. After this step, the complete model can 
be used to study the remaining sequences, through the incremental pruning, or any 
other global optimisation technique. 

This method is applicable to any planetary or moon system, as long as orbital 
data of the bodies are known. For example, we can use the model for a MGA 
transfer in the solar system, where the main attractor is the Sun, and the swing-by 
bodies are the planets, or for a tour of the moons of Jupiter, where the latter is the 
main attractor and the moons are the swing-by bodies. In the following description 
of the algorithm, for the sake of simplicity, sequences of planets are sought, but the 
same method applies to sequences of moons, when a planet is the central body. 

Two steps are used to assess the candidate planetary sequences: in the first one, 
the list of sequences is generated through some heuristic rules. In the second step, 
the feasibility of each sequence is assessed, so as to obtain the candidate sequences 
to be optimised.  

3.5.1 Sequence List Generation 
This step builds a list of possible swing-by sequences. Given departure and target 
bodies, the list is built incrementally by adding one planet at a time, considering 
constraints, which can be imposed on the planetary sequence itself. These 
constraints are based on heuristics, and allow discarding some trivial choices for the 
possible planetary sequences: examples are sequences which contain too many 
resonant swing-bys of the same planet, or contain swing-bys of farther planets 
(although energetically feasible, they can increase the transfer time too much). 

The process of building the list of possible sequences is shown in Algorithm 
3.3. The algorithm requires the departure planet , as well as a list  containing 
all the planets that can be exploited for the swing-bys, and the destination planet 

0P PL

fP . The procedure makes use of three lists of sequences:  contains the 

incomplete feasible sequences found so far (so sequences that respect the heuristic 
constraints but do not reach the target planet); 

,inc feaL s

feasL  contains the complete feasible 

sequences found so far; finally  is a temporary list used within the loops. The 

list  is initialised with only one incomplete sequence, which contains only 

the departure planet ; the other two lists are initialised to empty (lines 1 to 3). 

tempL

,inc feasL

0P

During the algorithm, a temporary sequence  is built by adding one planet 

at a time, chosen from the available planets in , to each sequence in the list 

 (line 7). The heuristic rules will tell whether to keep this new sequence or to 

discard it. The main loop in 

,i temps

PL

,inc feasL

Algorithm 3.3 terminates when there are no more 
incomplete, feasible sequences. At the end, all the complete, feasible sequences are 
collected in list feasL . 
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Algorithm 3.3. Sequence list generation. 

 1:   , 0inc feasL P  

 2: tempL   

 3: feasL   

 4: While , Do ,inc feasL  

 5:  For each sequence ,i inc feasLs , Do 

 6:   For each body j PP L  for swing-by (and the arrival body), Do 

 7:     , ,i temp i jP   s s

 8:    Check the feasibility of  according to the heuristics ,i temps

 9:    If  is feasible, Then ,i temps

 10:     If  is incomplete, Then ,i temps

 11:       ,temp temp i tempL L  s  

 12:     Else 

 13:       ,feas feas i tempL L  s  

 14:     End If 
 15:    End If 
 16:   End For 
 17:  End For 
 18:   , ;inc feas temp tempL L L 

 19: End Do 
 
The heuristic rules applied by Algorithm 3.3 are listed below. Some are based 

on the assumption that the orbits of the bodies are circular and coplanar, as will be 
explained in the following section. 

 The number of swing-bys in a sequence is at most ,sb maxn . This is needed to 

avoid the number of sequences to grow to infinity. 
 The number of resonant swing-bys in a sequence is at most n . ,rsb max

 If the target body has a longer orbital radius than the departure’s one, then 
the number of transfer legs going inwards is at most ,back maxn . In the same 

way, if the target body’s orbit has a smaller radius than the departure’s one, 
then the number of transfer legs going outwards is limited. 

 If the target body’s orbit has a longer radius than the departure’s one, then 
an inward transfer is possible only between two bodies whose orbits are 
spaced at most by ,backspacing max  elements in the body list sorted by orbital 

radius. For example, in an Earth-Saturn transfer in the solar system, 
choosing , 1backspacing max

n

n  , an Earth-Mercury leg would make the sequence 

unfeasible, while an Earth-Venus leg is admitted. Equivalently, if the target 
body’s orbit has a shorter radius than the departure’s one, then an outward 
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transfer is possible only between two bodies whose orbits are consecutive in 
the list sorted by radius.  

 If the target body’s orbit has a longer radius than the departure’s one, then 
no body with radius greater than the target one is allowed in the sequence. 
This is because if it is possible to reach an orbit whose radius is greater than 
the target, then it is possible to reach the target, too. Equivalently, if the 
target body’s orbit has a shorter radius than the departure’s one, then no 
body with a radius shorter than target’s is allowed. 

Depending on the problem, some or all of these heuristic rules can be used, and 
their parameters can be tuned accordingly. 

After this first step, we have a number of possible sequences which can still be 
pretty high. Therefore, we assess the feasibility of each sequence with the following 
method. 

3.5.2 Sequence Evaluation 
This step assesses the feasibility (from an energetic point of view) of each 
sequence, and gives an approximated value of the relative velocity at the arrival 
planet. Since this quantity is often important when dealing with multi gravity assist 
transfers, it can also be used to rank each sequence in the list. 

Each of the sequences found at the previous step is evaluated: since the number 
of sequences can still be pretty high, the idea here is to have a fast assessment of 
each sequence, using a reduced model, which can be considered an extension to 
what is proposed in [74]. In particular, the following assumptions were adopted: 

 Orbits of all the bodies at which swing-by can be performed, and the 
spacecraft departure body, are considered circular; 

 All the orbits and transfers are considered to lie in the same plane (planar 
system); 

 No phasing is taken into account: a swing-by or rendezvous is possible 
every time the orbit of the spacecraft intercepts the orbit of the body; 

 No other propelled manoeuvres are considered, other than the launch. 
Swing-bys are responsible for changing the heliocentric energy of the 
spacecraft; this makes this model unsuitable for evaluating the change in 
relative velocity in resonant swing-bys; 

 No overturning of the outgoing heliocentric velocity vector after swing-by 
is allowed. This means that, if the rotation of the incoming relative velocity 
vector leads to an outgoing relative velocity vector which is on the other 
semi-plane with respect to the planet velocity, then the rotation which gives 
the maximum acceleration or deceleration of the spacecraft in the 
heliocentric reference is considered (see Fig. 3.14 and Fig. 3.15). 

Fig. 3.14 and Fig. 3.15 show the triangles of velocity for a planar swing-by 
with a planet with circular orbit. The velocity of the planet  is purely transversal 

( ). The velocity vectors and angles referring to the incoming conditions at infinity 
before the swing-by are denoted by a superscript (–), while those after the swing-by 
are identified by (+). 

Pv

θ̂
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Fig. 3.14. Velocity triangles for a swing-by of a body with circular orbit (its orbital 

velocity is purely tangential). 

 
Fig. 3.15. Deflection correction in order to avoid overturning. Primed angles and 

dotted lines refer to the case in which overturning occurs. 
 
The subscript (1) or (2) refer to the two possible outcomes of the swing-by, 

depending on the direction of deflection (see Section 2.2.2). In the case represented 
in Fig. 3.14, there is no possible overturning of the velocity vector: in fact, the 
deflection 2  originates the maximum increase in outgoing absolute velocity . In 

the same way, the minimum outgoing velocity 
2v

1v  is obtained with deflection 2 . In 

Fig. 3.15, instead, the maximum deviation 2   does not provide the maximum 
magnitude of the outgoing velocity vector. In fact, that is achieved by using a 
smaller deflection 2 . This last one is the one used for computations within this 
model, to avoid overturning. 

Given this procedure, and a sequence which is to be assessed, the trajectory 
model is used in the following way: depending on the problem, there can be a 
launch, or the initial conditions for the spacecraft are given at a certain planet. In the 
case of launch, the spacecraft is assumed to be at the departure body (thus on a 
circular orbit). The time of launch is not influent, as body’s orbits are circular and 
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no phasing is considered. The launch excess velocity is tangential (to have the 
maximum or minimum variation of semi-major axis), and with the same verse of 
the velocity of the planet if the next planet in the sequence has a longer radius, 
otherwise is on the opposite verse. Instead, in case the initial velocity is given, then 
no other calculations or assumptions on launch are needed. 

The resulting orbit (either after launch or obtained with the assigned initial 
velocity) is subsequently computed: if this orbit intercepts the orbit of the second 
body in the sequence, then a swing-by of that planet can be exploited. Assuming 
that the planet is in the correct position regardless of the arrival time, the incoming 
relative velocity is computed. 

SWING-BY 
Given the incoming conditions, a planar swing-by is fully determined by the 
pericentre and the direction of deflection. Petropoulos et al. [74] proposed to use the 
lowest allowed altitude for all the swing-bys, in order to maximise the heliocentric 
velocity variation (and thus maximising the change in energy). Still, fixing a 
particular value for the closest approach, there are two possible outgoing 
heliocentric velocities: one is higher (positive turning of velocity vector) and the 
other one is lower (negative turning) than the incoming velocity. The same authors 
made the following choice: if the orbit of the next different planet in the sequence 
has a longer semi-major axis, then the positive turning is chosen, otherwise the 
negative turning is considered. 

This choice seems reasonable when assessing the feasibility of a given 
sequence, which is what is done in the work of Petropoulos. On the other hand, we 
think that this assumption is not suitable when an estimation of the final relative 
velocity is required. In fact, using the lowest possible altitude for the swing-by 
enables to determine whether it is possible to reach a given radius exploiting the 
swing-bys only, from an energetic point of view (i.e., neglecting plane change and 
phasing). Under these assumptions, though, the final relative velocity is just one of 
the many possible final relative velocities which can be achieved by changing the 
altitudes of the various swing-bys. If the problem requires to reach the final planet 
with the lowest possible relative velocity (a very common objective), or more 
seldom with a specific value of relative velocity, then this way does not provide any 
information on which sequence is possibly the best. 

For this work, it was decided that several choices for the radius of the 
pericentre of the swing-by hyperbola have to be assessed, in order to have an 
estimation of the range of the final relative velocity which is achievable with the 
considered sequence. Certainly, it is not possible to consider a continuous set of 
values for the radius of pericentre, for each swing-by, as each combination of radii 
leads to a different trajectory. 

Let  be the ith possible radius (expressed in radii of the planet). If the 

sequence under evaluation involves 

,p ir

sbn  swing-bys, and the list of possible radii 

contains k elements, then the number of combinations of radii is sbnk . Considering 
that each swing-by with a fixed altitude has two possible outgoing velocities 
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(depending on the direction of the rotation of the relative velocity), then the total 

number of trajectories to assess for each sequence is  2 sbn
k . 

Despite the number of trajectories to evaluate can grow considerably with the 
number of swing-bys and number of possible radii, the evaluation of each trajectory 
is very fast, as this model does not imply the use of any computationally expensive 
algorithm (Lambert or Keplerian propagation), but the whole problem is solved 
analytically. 

FEASIBILITY 
Having fixed the combination of radii, the new orbit after the swing-by is computed 
and the algorithm continues looking for the intersection with the following body’s 
orbit of the sequence. If the swing-bys allow the spacecraft to reach the last planet 
in the sequence, then we say that the sequence is energetically feasible, and the 
velocity relative to the last planet ( v ) is computed and stored. 

The procedure is repeated for each combination of radii/direction of deflection, 
and the minimum value of  (or the one closest to a target value) is stored. This 

value will be used as an indicator of the possible achievable value of v . 

v



3.5.3 Preliminary Test Case 
A complete application of the sequence generation procedure to real test cases is in 
Chapter 4. Here we present a preliminary test case, where the method was tested on 
a MGA transfer from Earth to Saturn. Up to 2 resonant swing-bys were allowed in 
each sequence and 1 inward transfer was admitted. The launch excess velocity was 
set to 3 km/s. The resulting list of feasible sequences is given in Table 3.4. 
 
Table 3.4. Feasible sequences for an Earth-Saturn transfer, according to energetic 

feasibility and heuristic rules. 
1 E V E E M S   
2 E V V E J S   
3 E V E E E M S  
4 E V E E E J S  
5 E V E E M M S  
6 E V E E M J S  
7 E V E E J J S  
8 E V E M M J S  
9 E E V E E M S  
10 E E V E E J S  
11 E V E E E M J S 
12 E V E E M M J S 
13 E V E E M J J S 
14 E V E M M M J S 
15 E V E M M J J S 
16 E E V E E M J S 
17 E E V E M M J S 

 



98 INCREMENTAL PRUNING 3. 
 

The time needed to compute this list is about 1 second, using MATLAB® on a 
Pentium 3 Ghz computer. It is important to highline that, in the case that only the 
heuristic rules are applied, there are 249 possible sequences. The energetic 
feasibility criterion reduces this number to only 17, in a reasonably short time. It is 
also noticeable that sequence 2 in Table 3.4 is the sequence used by the ESA/NASA 
Cassini mission to Saturn [22]. This sequence is also the one that will automatically 
be found by ACO-MGA in Chapter 5. 

3.6 Two Preliminary Case Studies 

This section will present some preliminary results that were found using the 
incremental pruning. The sequence of planetary planets is pre-assigned. 

We consider two basic problems with a single gravity assist manoeuvre: an 
Earth-Venus-Mars transfer and an Earth-Earth-Mars transfer. Despite the simplicity 
of these two test cases they are representative of two classes of MGA transfers and 
illustrate well the complexity of these kinds of problems. Moreover, the second 
problem will guide towards the definition of a particular partial objective function, 
of general validity for resonant swing-bys. 

In these two tests, the search for the optimal solution at the second level is 
performed using boxing method 1 together with the affine transformation of the 
space, described in Appendix C, to which we refer for a complete description. The 
same appendix includes two additional test cases using the transformation (in 
combination with boxing method 3), including a transfer to Mercury, exploiting the 
sequence of swing-bys of the Earth and Venus twice. Although the use of the 
transformation led to some good results, it resulted to be unable to tackle problems 
with more complicated search spaces. Therefore, in this thesis, it will be limited to 
the tests in this section only. Boxing method 4, using the Mean Shift clustering 
algorithm, will be used in the case studies in Chapter 4. 

In the following tests, the incremental approach was compared to the all-at-
once approach with five different global optimisation methods, of which two are 
deterministic and three are stochastic. The two deterministic optimisers are 
DIRECT (Divided Rectangles, [114]) and MCS (Multilevel Coordinate Search, 
[115]). The stochastic optimisers are DEVEC, an implementation of Differential 
Evolution, an implementation of Particle Swarm Optimization, and the same Multi-
Start method used for the search in the incremental approach. The optimisers were 
applied with different settings and with an increasing number of function 
evaluations. In the following, the optimisers are tested for 20000, 40000 and 80000 
function evaluations. 

The incremental approach uses at each level a search based on the Multi-Start 
technique (as described in Section 3.4.1). Since both the incremental algorithm and 
the global optimisation methods have a stochastic component, 20 runs were 
performed for each test case. 

In all test cases the whole problem is decomposed into levels. After a set of 
feasible points is found and a set of boxes is generated, the affine transformation is 
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applied to the subspace of the level and the incremental approach proceeds by 
adding the next level. 

We also present in Table 3.5 the data of the bodies – planets and moons – 
which will be used in this thesis. The planetary constant   of the Sun is 

. 11 3 21.3272 10  km /s
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3.6.1 Sequence EVM 
The first test case consists of a transfer from the Earth to Mars exploiting a swing-
by of Venus. For this test, no DSM along the Earth-Venus transfer leg is 
considered. Therefore the problem has dimensionality 6 and the bounds of the 
search space are reported in Table 3.6. Level 1 computes the first deep space flight 
phase, while the second adds the swing-by of Venus and the deep space flight to 
Mars. The objective function f is the total v , which is the sum of the relative 
velocity at departure and the DSM between Venus and Mars. The problem was 
initially analysed by running a Multi-Start optimisation on the whole domain. A 
local search was started from a total of 500 starting points, taken with Latin 
Hypercube, and the 10 best solutions are shown in Table 3.7. The total number of 
function evaluations needed to compute all the solutions was 494,233. The 
trajectory corresponding to the best solution is shown in Fig. 3.16. 

DEVEC, Multi-Start optimisation and PSO were run on the whole problem for 
200 consecutive times. In Table 3.8 it has been reported the percentage of times the 
stochastic optimiser finds a solution proximal to solution 1 in Table 3.7. In addition 
we report the percentage of times the stochastic optimisers find a solution that is 
better than the deterministic ones. The key point in the proposed incremental 
approach is not only to reduce the computational cost but also to increase 
robustness, i.e. increase the probability to find the global minimum. 

The incremental approach starts at level 1 by looking for all local minima for 
the objective function 1f  which is the departure relative velocity  at the Earth. A 
local search was started from a total of 20 random starting points and an equal 
number of boxes were generated. The size of the edges of the boxes was chosen as 
in 

0v

Table 3.9. 
 

Table 3.6. Bounds for the EVM test case. 
Level Variable LB UB 

0t , d, MJD2000 3650 9128.75 (3650 + 15 years) 
1 

1T , d 50 400 

1 , rad     

,1pr , planet radii 1 5 

2  0 1 
2 

2T , d 50 700 
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Table 3.7. The 10 best solutions found with the all-at-once approach for the EVM 
problem. 

Sol
. 

v , 
km/s 

0t , d, 
MJD2000 1T , d 1 , rad ,1pr , radii 

2  2T , d 

1 2.9818 4472.013 172.29 2.9784 1 0.5094 697.61 
2 2.983 4473.775 170.53 2.9859 1.0005 0.8611 698.15 
3 2.9962 4475.217 171.12 2.853 1.076 0.7292 692.88 
4 3.0393 4480.19 167.58 2.8044 1.1307 0.6371 692.57 
5 3.1707 4482.079 174.65 -2.8195 1.1885 0.4608 629.93 
6 3.1708 4482.145 174.60 -2.822 1.2033 0.4923 629.78 
7 3.1719 4481.964 174.78 -2.8076 1.106 0.6224 630.77 
8 3.1884 4471.355 171.44 -3.1416 1.019 0.5334 700.00 
9 3.2217 3872.306 105.70 2.7087 1 0.545 628.02 
10 3.2536 3872.891 104.68 2.6838 1 0.8006 627.22 
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Fig. 3.16. Projection on the ecliptic plane of solution 1 in Table 3.7 for the EVM test 

case. 
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Table 3.8. Solutions and performances of different optimisers on the EVM transfer. 
Solver 20000 evaluations 40000 evaluations 80000 evaluations 
DIRECT, km/s 4.3760 4.3730 4.3730 
MCS, km/s 6.7390 5.5240 5.4080 
DEVEC, 200 runs 
< 3 km/s 6.5% 5.0% 7.0% 
< DIRECT 99.5% 99.5% 99.5% 
< MCS 100.0% 100.0% 100.0% 
Multi-Start, 200 runs 
< 3 km/s 2.5% 3.0% 3.0% 
< DIRECT 97.0% 99.0% 98.5% 
< MCS 100.0% 100.0% 100.0% 
PSO, 200 runs 
< 3 km/s 2.0% 2.5% 7.5% 
< DIRECT 71.5% 73.0% 78.5% 
< MCS 100.0% 96.0% 93.0% 

 
 

Table 3.9. Box edges for the two variables of level 1. 
Variable Box edge 

0t , d 200 

1T , d 70 
 
 
Fig. 3.17 shows the contour plot of the search space at level 1. The boxes 

which have been generated by the algorithm using method 1 are highlighted in blue, 
in semi-transparency. The size of the boxes is arbitrary and was set to a percentage 
of each dimension. 

The Multi-Start search of the incremental algorithm was able to identify almost 
one local minimum for each synodic period. The number of evaluations to find all 
the 20 boxes was 516. After applying the affine transformation to level 1 and 
adding level 2, the whole reduced space was sampled with other 20 random starting 
points, and a local search was run from each one of them for a total of 8827 
function evaluations. The result was that: 

 90% of the 20 best solutions found with the all-at-once approach have the 
values of level 1 variables included in one of the boxes; 

 The best solution found with the incremental approach is the same as the 
best known solution, i.e. solution 1 in Table 3.7. 

In addition, the incremental search has been run twenty consecutive times, 
obtaining always the same result and the same global minimum. 
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Fig. 3.17. Boxes found after analysing level 1. The space outside the boxes is pruned. 

The background gives an idea of the distribution of the local minima. 
 

3.6.2 Sequence EEM 
The second test case consists of an Earth to Mars transfer, through a swing-by of 
the Earth. This second case is significantly more complicated than the previous one 
due to the required optimisation of the Earth-to-Earth transfer in order to design a 
correct gravity assist manoeuvre. In fact, although this problem has two levels like 
the previous test case, the aim of this test is twofold: to demonstrate the 
effectiveness of the incremental approach, and to define a particular class of 
problem-dependent functions  i i x . 

The Earth gravity assist is used to increase the kinetic energy of the spacecraft 
with respect to the Sun when the launch capabilities are limited. In order to gain the 
required , the spacecraft has to reach the Earth with a relative velocity vector 
different from the one at departure. This is achieved with the DSM along the Earth-
Earth transfer leg. Thus, the optimal design of the first leg is essential in order to 
exploit the encounter of the Earth properly, and gain the energy to reach Mars. 

v

The launch velocity vector  depends on the launch capabilities, therefore its 

modulus was set at 2 km/s for this test case, while the declination 
0v

  and right 
ascension   were left free. 

Being  constant, the solution vector has only 5 decision variables on level 1, 

and  can also be removed from all the objective functions without loss of 
generality. 

0v

0v
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Table 3.10 presents the bounds for the variables of the problem. Once again the 
whole problem is decomposed into two sub-problems, corresponding to two levels. 
Level 1 consists of the Earth-Earth transfer, while level 2 computes the swing-by 
and the Earth-Mars transfer leg. The objective function f is the sum of the  of the 
two DSMs. 

v

Due to the higher dimensionality of this test, for athe all-at-once approach 5000 
starting points were used, leading to about 69 10  function evaluations. The 10 best 
solutions are shown in Table 3.11. Like in the previous case, the three stochastic 
optimisers and the two deterministic ones were tested for an increasing number of 
function evaluations and the results are reported in Table 3.12. 

 
 

Table 3.10. Bounds for the EEM test case. 
Level Variable LB UB 

0t , d, MJD2000 3650 
9128.75 

(3650 + 15 years) 
 , rad     

 , rad 2  2  

1  0.01 0.99 

1 

1T , d 50 1000 

1 , rad    

,1pr , planet radii 1 5 
2 

 2 0.01 0.99 

2T , d 50 1000 
 
 

Table 3.11. The 10 best solutions found with the all-at-once approach for the EEM 
problem. 

0 , d, 
MJD2000 

t
1T1  , d v , km/s  , rad  , rad Sol. 

1 0.326 5430.17 -1.883 -0.0031 0.4691 500.065 
0.333 6184.04 1.358 0.0266 0.5171 524.750 2 
0.346 3650.00 1.341 -0.0032 0.4552 514.730 3 
0.350 3770.54 1.789 0.025 0.2607 383.198 4 
0.361 6318.71 1.793 -0.0642 0.2623 383.977 5 
0.361 8732.38 -1.768 -0.0018 0.6846 888.721 6 

7 0.368 6323.20 -1.446 0.0083 0.3073 385.862 
8 0.374 6322.99 -1.446 0.0032 0.3163 387.371 
9 0.376 5031.64 -1.774 0.0079 0.6778 886.791 
10 0.378 5029.72 -1.774 0.0115 0.679 887.477 
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Table 3.11 continued. 

Sol. 1 , rad ,1pr , radii 
2  2T , d 

1 -2.901 2.937 0.6195 307.900 
2 3.142 3.022 0.4186 244.296 
3 -2.982 4.438 0.4666 706.343 
4 2.875 2.414 0.6642 711.414 
5 2.749 2.833 0.0288 207.888 
6 3.142 3.860 0.7118 766.862 
7 -3.084 2.758 0.1549 242.328 
8 3.119 2.815 0.1556 243.481 
9 -2.800 4.173 0.3367 304.612 
10 -2.762 4.046 0.228 302.372 

 
Table 3.12. Solutions and performances of different optimisers on the EEM transfer, 

all-at-once approach. 
Solver 20000 evaluations 40000 evaluations 80000 evaluations 
DIRECT, km/s 2.7989 1.1870 1.1608 
MCS, km/s 1.2070 1.2070 0.9944 
DEVEC, 300 runs 
< 0.33 km/s 0.0% 2.7% 8.0% 
< DIRECT 69.7% 87.7% 85.7% 
< MCS 100.0% 86.3% 85.7% 
Multi-start, 300 runs 
< 0.33 km/s 0.3% 0.0% 0.7% 
< DIRECT 100.0% 98.3% 98.7% 
< MCS 94.7% 98.3% 96.0% 
PSO, 300 runs 
< 0.33 km/s 0.7% 0.3% 0.0% 
< DIRECT 100.0% 91.3% 76.3% 
< MCS 84.0% 91.3% 71.3% 

 
The choice of the objective function 1f  for the incremental approach is trickier 

than in the previous case. In fact the cheapest way to perform an Earth-Earth 
transfer is to move from the Earth orbit as little as possible (or not move at all). 
Therefore, if the sum of the DSM and  is chosen as objective to minimise, the 
optimiser returns solutions with no manoeuvre. These solutions, though, arrive at 
Earth with a relative velocity that is not suitable to exploit the swing-by properly. 
Furthermore, it is known from the physics of the problem that the zero-manoeuvre 
solution is a local minimiser even for the whole EEM transfer. Since the gravity 
assist manoeuvre requires an accurate timing to reach the swing-by planet with the 
right incoming conditions, its effect is to narrow down the basin of attraction of 
each minima. In fact, a gravity assist manoeuvre is more sensitive to a small 
variation of the variables than a direct transfer. Consequently, the gradient of the 
objective function in a neighbourhood of the local minima is higher and the basin of 
attraction is expected to be narrower. Now a zero-manoeuvre solution for the EEM 

0v
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case physically corresponds simply to a delayed departure from Earth after the EE 
leg, with no gravity assist. All the zero-manoeuvre solutions, therefore, have a 
much wider basin of attraction. This can be easily verified by applying a general 
stochastic global optimiser to the whole EEM problem. The optimiser will return 
with a higher probability the zero-manoeuvre solutions if no special condition is 
imposed on the departure velocity at the Earth. 

In order to minimise the  on the EM leg, the incoming velocity vector at the 
Earth should be such that the outgoing relative velocity vector is aligned with the 
velocity vector of the Earth (optimum increase in the kinetic energy). 

v

A suitable criterion to optimise the first leg can be found by studying the 
characteristics of the relative velocity vector at the end of the Earth-Earth transfer. 
Fig. 3.18 represents the in-plane components (radial  and transversal rv v ) of the 
normalized incoming relative velocity vector for the best solutions found 
minimising the total EEM  with the all-at-once approach. On the same plot the 
objective function for the complete problem is also represented. 

v
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Fig. 3.18. Normalised in-plane components of the incoming relative velocity vector 

before the Earth swing-by, for the best solutions found, and corresponding 
objective value. 

 
For the best solutions (from 1 to about 300), the direction of the relative 

velocity is almost completely radial, while for the rest of the solutions the radial 
component or the entire velocity drops to zero. Therefore, the following partial 
objective function can be chosen for all the levels in which there is the need for an 
outgoing velocity parallel to the velocity of the planet either to brake or to 
accelerate: 
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This function tries to minimise the DSM while maximising the radial 
component  of the relative velocity before the subsequent swing-by, with respect 

to the other components . The weight 
rv

, hv v   was set to 1 km/s. 
Although this criterion was derived for a specific case, it has general validity 

and applies to two classes of MGA transfers: aphelion rising gravity manoeuvres 
and perihelion lowering gravity manoeuvres. 

The incremental approach was applied to level 1 starting a local search from 60 
random points for a total of 13,547 function evaluations. Unlike in the previous 
case, the edges of the boxes on all the dimensions are a fraction of the search space, 
except for the edge along direction , which spans the entire range (15 years). The 
reason is that the orbit of the Earth is almost circular: therefore a different position 
along its orbit has little influence on the arrival conditions at the end of the Earth-
Earth leg. Thus, it is not possible to prune along  at level 1, i.e. in the E-E leg. 
The size of the boxes was set according to 

0t

0t
Table 3.13. 

Fig. 3.19 (a) and (b) show the projection of the boxes along variables of level 1. 
The red dots represent the 50 best solutions found with the all-at-once approach. 
After applying the affine transformation to level 1 and adding level 2, the reduced 
search space was sampled with 30 points and a local optimisation was started from 
each one of them for a total of 32,544 function evaluations. The result was that: 

 86% of the 50 best solutions found with the all-at-once approach have the 
values of the level 1 variables included in one of the boxes; 

 The best solution found with the incremental approach is the same best 
solution in the table. 

Even in this case, the incremental approach was run for 20 times obtaining 
always very similar results. The globally optimal trajectory is represented in Fig. 
3.20. 

 
 

Table 3.13. Box edges for the two variables of level 1. 
Variable Box edge 

0t , d Whole domain 

 , rad 6  

 , rad 6  

1  0.1 

1T , d 70 
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 (a) Projection along t0, δ, θ (b) Projection along α1, T1 

Fig. 3.19. Projection of the boxes in level 1 along the direction of the variables t0, δ, θ 
(a) and α1, T1 (b). The stars are the 50 best all-at-once solutions. 
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Fig. 3.20. Projection on the ecliptic plane of solution 1 of the EEM test case. 

3.7 Comparative Results 

In this section, some test cases will be presented, aimed at assessing the 
performances of the incremental pruning process over classic global optimisation 
techniques. 

It will also be shown how the proposed incremental search performs an 
effective pruning of the search space, providing interesting results with a lower 
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computational cost compared to a non-incremental approach. In particular we 
compare the proposed incremental process, to the direct application of known 
stochastic and deterministic methods for global optimisation to the whole problem. 

We will also show that the incremental pruning process can be coupled with 
several off-the-shelf search methods, and the performances of the different 
optimisers will be evaluated. 

As resulted in the previous section, the affine transformation resulted to be 
efficient for relatively easy transfer problems. However, when more swing-bys are 
introduced and a wider range of parameters is chosen, the discontinuities in the 
affine space become significant, and therefore the use of the transformation seems 
not to improve the results. Furthermore, one of the key advantages of the pruning 
process is to isolate multiple families of solutions rather than a single global one. 
For these reasons, in the following test cases, the use of the transformation is 
substituted by independent optimisations on each feasible set. 

3.7.1 Testing Procedure and Performance Indicators 
When a new optimisation approach is proposed, it is good practice to test its 
performance against existing techniques on a known benchmark. In order for the 
tests to be significant, the testing procedure and the performance indicators need to 
be rigorously defined. The tests will compare the performance of a generic global 
optimiser, when applied to the search of the solution of a given problem by the all-
at-once approach, against the performance of the same optimiser operating on the 
reduced search space after pruning. In fact, a key advantage of the proposed 
incremental pruning approach is to increase the probability to find sets of good 
solutions without increasing the computational cost. Furthermore, since the 
incremental approach makes use of stochastic-based techniques to identify the 
feasible set, some tests will demonstrate the reproducibility of the result of the 
incremental pruning itself. 

A definition of a general testing procedure for global optimisation algorithms is 
presented in Appendix D, to which we refer. For the incremental approach, a 
number of performance indicators are defined that aim at establishing if the 
reduction of the search space achieved during the incremental search is reliable and 
efficient. It is here important to remind that the aim of the incremental approach is 
not to generate optimal solutions but to generate a set of sub-domains jD D  

bounding sets of locally optimal solutions. Therefore, the following indicators aim 
at measuring the ability of the incremental approach to repeatedly generate a tight 
enclosure of good solutions. Ideally, a good pruning would always yield few, small 
boxes enclosing the global optimum together with all the solutions satisfying 

f ftol  . The performance indicators for the incremental pruning are presented in 

the following sub-sections. 

PERCENTAGE OF INCLUSION OF THE BEST SOLUTIONS 
Through the all-at-once approach a number of solutions satisfying the condition 

f ftol   will be identified. Those solutions are considered to be neighbours of the 
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best one in the criteria space. The incremental approach is expected to identify, for 
every run, at least one box containing one or more of the solutions neighbouring the 
best one, i.e. one or more solution below the threshold. This indicator gives a 
measure of the ability of the incremental approach to identify good regions of the 
search space without discarding areas containing potentially good solutions. 

PERCENTAGE OF PRUNED SPACE 
This indicator measures the effectiveness of the reduction of the search space. 

AVERAGE NUMBER OF BOXES 
After the incremental pruning has completed the reduction of the search space, each 
block coming from the pruning can be further explored to find locally optimal 
solutions. A small number of boxes is therefore desirable, although multiple boxes 
can correspond to multiple equivalent launch opportunities. Thus, this indicator has 
to be used together with the percentage of inclusion of the best solutions. In the 
following we also considered the standard deviation on the number of generated 
boxes to provide an indication of the dispersion of the results. 

COVERAGE 
This indicator measures the ability of the incremental approach to perform a 
repeatable pruning of the search space. Given a box ,j kB  for run number k we 

compute the number of times that ,j kB  is covered partially or completely in all the 

other runs: 

    , ,: , ,j j kI k i k p k p B B     i p  (3.18) 

with   denoting the cardinality of the set. The other coverage index is the actual 

percentage of a block ,j kB  at run k that is covered by another block ,i pB  at run p: 

    
 

, , ,
1 1

1
( ) Vol Vol

runs q pn

j j k i p i p
p iruns

k B B
n


 

  B  (3.19) 

where  q p  is the number of blocks resulting from run p,  Vol   is the volume of 

a given box. 

3.7.2 Case Studies 
The incremental algorithm was tested on the optimisation of two MGA trajectories: 
the first one is an Earth to Mars transfer, with a single gravity assist of the Earth 
(EEM sequence); the second is a transfer to Mercury, exploiting two swing-bys of 
Venus and one of Mercury (EVVMeMe sequence). These two test cases are 
representative of the class of MGA transfers with resonant swing-bys and well 
illustrate the complexity of this kind of problems. The incremental approach was 
compared to the direct solution of the whole problem (all-at-once approach) with 
three stochastic global optimisation methods, Multi-Start optimisation, Differential 
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Evolution and Monotonic Basin Hopping, and two deterministic global optimisers, 
DIRECT and Multilevel Coordinate Search. 

For the incremental pruning, method 3 was used to generate boxes, and then no 
affine transformation was applied, which means that all the combinations of the 
boxes are to be searched. 

SEQUENCE EEM 
We use a similar test case to what was presented before, in Section 3.6.2, for the 
sequence EEM. The bounds of the problem are the same as in Table 3.10. The 
global objective function f is the sum of the v  of the two DSMs, plus the 
difference between the spacecraft velocity and Mars velocity at arrival. 

Table 3.14 reports the number of bins and the number of function evaluations 
for the pruning performed with MACS and MBH. MBH was run with a 
perturbation radius l  equal to 10% of the range of the variable at level . MACS 

was run with a population of 20 agents with  of 10, and a to  equal to 

 of the range of the variables at level . For the restart of MBH we set the 
maximum number of trials to 30, while for MACS we partitioned only the second 
and fifth coordinate since they represent the most critical ones for the EE leg. 

iD

convpopration

i

l
410 D

For the objective function 1f  of the incremental approach at level 1, the one in 
Eq. (3.17) was chosen, as it seemed promising according to previous test cases. 

The threshold for level 1 was set to 1 km/s to leave some flexibility in the 
search for optimal resonant transfers. At level 2 the objective function is the total 

, therefore it was not pruned. v
A first test was run, applying two deterministic-based global optimisers, 

DIRECT and MCS, and three stochastic-based global optimisers, DE, MS and 
MBH to the entire problem to assess the performance of these global optimisers for 
an increasing number of function evaluations. The best known solution for this 
problem has a total  of 2.908 km/s (see v Fig. 3.21), therefore, we set ftol  to 0.05 

km/s. 
 

Table 3.14. Number of intervals and function evaluations for the EEM case. 

Level Variable 
Grid 
size 

N. fun. eval. 
MACS 

N. fun. eval. 
MBH 

0t , d, MJD2000 1 

  10 

  5 

1  5 

1 

1T , d 30 

40000 40000 

1 , rad N/A 

,1pr , planet radii N/A 

2  N/A 
2 

2T , d N/A 

10000-40000 10000-40000 
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Fig. 3.21. Projection on the ecliptic plane of the best solution found by the 

incremental algorithm. The total Δv is 2.908 km/s. 
 
Fig. 3.22 shows the distribution of the values of the variables at level 1 for 200 

solutions with an objective function below 2.958 km/s. It is interesting to note that 
the solutions belong to different launch windows (different departure time) and 
have a departure velocity with respect to the Earth, which can be either against the 
velocity of the Earth (  close to 1), or perpendicular to it  close to 0.5). It is 
therefore expected that both MACS and MBH will find distinct families of 
solutions when searching for the feasible set at level 1. 

For the all-at-once test, we followed the procedure presented in Section 3.7.1, 
i.e. DE and MBH were run 100 times and the number of solutions with an objective 
function below or equal to the best-known solution was recorded. The DE algorithm 
was run with perturbation parameter 0.8F  , crossover parameter , 
search strategy best, and a population size of 90 individuals, while MBH was run 
with a 

0.75rC 

l  equal to 10% of the range of the variables. The results of the all-at-once 
test, summarised in Table 3.15, suggest that deterministic approaches, although 
their predictably yields the same solution at every run, do not provide satisfactory 
results. All stochastic approaches, on the other hand, are able to find, with almost 
100% probability, better solutions than the deterministic ones. Therefore, although 
the probability of finding the best-known solution remains small for all stochastic 
methods, except MS, their use is advisable. Table 3.15, however, suggests that 
sophisticated global search methods, such as DE and MBH, are not the right choice; 
in particular, DE is the worst performing algorithm. The reason is the fast 
convergence of DE with the selected settings. As theoretically demonstrated in [56] 
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and [65], DE can converge to a fixed point in D, which is not necessary a local or 
global optimum. Once DE has converged, an increase in the number of function 
evaluations does not improve the performance. Furthermore, if the objective 
function is globally non-convex, i.e. presents multiple similar funnel structures, 
MBH may not be effective and DE could quickly converge but within a single 
funnel, mainly due to the selection heuristic. A simple Multi-Start algorithm, 
instead, can yield better performance provided that the local optimisation algorithm 
converges fast. 
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Fig. 3.22. Parameters of the first level for the local minima of the complete problem 

below 2.958 km/s. It is clearly visible that there exist solutions with 
objective value very close to the best known minimum, but having 
significantly different solution vectors. 
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Table 3.15. Comparison of different optimisation approaches applied to the EEM case 
all-at-once. 

Solver 
20,000 

evaluations 
40,000 

evaluations 
80,000 

evaluations
160,000 

evaluations 
DIRECT, km/s 4.317 4.317 3.822 3.809 
MCS, km/s 3.840 3.840 3.840 3.812 
DE, 100 runs 
< 2.958 km/s 0% 7% 27% 27% 
< DIRECT 68% 99% 100% 100% 
< MCS 24% 85% 100% 100% 
MBH, 100 runs 
< 2.958 km/s 1% 5% 18% 41% 
< DIRECT 99% 100% 100% 100% 
< MCS 96% 100% 100% 100% 
MS, 100 runs 
< 2.958 km/s 22% 32% 52% 67% 
< DIRECT 100% 100% 100% 100% 
< MCS 100% 100% 100% 100% 
 

Table 3.16. Incremental approach: performance on the EEM case over 100 runs. 
Performance index MACS MBH 
Inclusion of best solution 100% 100% 
Pruned space (mean value) 90.43% 93.51% 
Number of blocks, average 8.64 15.9 
Number of blocks, standard deviation 1.64 0.082 
Average coverage 88.58% 72.21% 

 
The incremental algorithm applied to the first level yields the results in Table 

3.16. The best solutions found with the all-at-once approach are always included in 
at least one of the boxes, which proves the reliability of the pruning, confirmed also 
by the value of the coverage indicators. At the same time, the percentage of pruned 
space is over 90% for both MACS and MBH. Therefore, it is expected that, when 
stochastic optimisers such as DE, MBH and MS operate on the reduced search 
space, the percentage of times they find solutions with a value lower than 2.958 
km/s increases significantly compared to the results in Table 3.15. The performance 
of the incremental pruning based on MBH are not as good as the one of the 
incremental algorithm based on MACS, mainly because in the former case it 
generates about twice the number of boxes and with a lower average coverage. 

Table 3.17 reports the performance of DE, MBH and MS on the reduced search 
space pruned at level 1. Differential Evolution was run with a reduced population of 
45 individuals and with the same setting and strategy of the all-at-once case. If we 
look at the percentage of times the best solution is included in at least one box, the 
average number of boxes and the percentage of success for 10,000 evaluations on 
the box containing the best solution, we can conclude that the overall probability of 
identifying the best solution, after pruning, has considerably increased. On the other 
hand, the total number of function evaluations, accounting for both the incremental 
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pruning and the search in all the boxes, has decreased. Note that even if the number 
of function evaluations was the same, the total cost would be lower due to the lower 
cost of the evaluation at level 1. In fact, on an Intel Pentium 4 3 GHz running a 
MATLAB® coded algorithm under Microsoft Windows, the cost for a single 
function evaluation at level 1 is 2.33 ms while the cost at level 2 is 3.68 ms. 

 
Table 3.17. Performance of DE and MBH on the box containing the reference solution 

over 100 runs. 

Solver 
10,000 

evaluations 
20,000 

evaluations 
40,000 

evaluations 
DE 100 runs 
< 2.958 km/s 52% 48% 56% 
MBH 100 runs 
< 2.958 km/s 41% 52% 55% 
MS 100 runs 
< 2.958 km/s 84% 97% 100% 

 
Assuming 40000 function evaluations for the pruning at level 1 and 10000 

function evaluations at level 2, for an average of 9 boxes, the total computational 
time for the incremental approach is 424,400 s against 478,400 s for the all-at-once 
approach with equal number of function evaluations. On the other hand, all the 
tested optimisers display a lower probability of success, in the all-at-once case, even 
for a higher number of function evaluations. 

Fig. 3.23 shows a section of the domain  along the first, second and fifth 
coordinate. The figure clearly shows the feasible set, identified by the clusters of 
solutions found by MACS, and the resulting boxes. The distribution of the feasible 
solutions is in agreement with what was found in 

1D

Fig. 3.22. In particular the two 
clusters around 1   and 0.5  , corresponding to the two optimal directions of 
launch, and the clusters around 1 500 dT   and 1T 300 d . Also note that at level 1, 
as expected, all the departure dates are equivalent and cannot be distinguished. 

SEQUENCE EVVMEME 
For this test, the search was performed over the interval 

. In this interval of launch dates there exists a 

particularly good solution for the EVVMeMe that was considered as possible 
chemical option for the ESA BepiColombo mission [

 0 3457,5457 d, MJD2000t 

31]. This trajectory will be 
used as reference solution in the following. The upper and lower bounds for the 
other variables are reported in Table 3.18 and define a search space D with 14 
dimensions. 
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Fig. 3.23. Section of the search space along the first, second and fifth coordinate. The 

figure shows the clusters of feasible solutions and the corresponding 
bounding boxes. 

 
Table 3.18. Bounds for the EVVMeMe test case. 

Level Variable 
Lower 
bound 

Upper 
bound 

N. 
bins 

N. fun. 
eval. 

MACS 

N. fun. 
eval. 
MBH 

0t , MJD2000 3457 5457 40 
1 

1T , d 90 180 10 
5000 15000 

1 , rad  /2  /2 3 

,1pr , planet radii 1.01 2 1 

2  0.01 0.6 4 
2 

2T , d 448 673 5 

70000 150000 

2 , rad  /2  /2 3 

,2pr , planet radii 1.01 2 1 

3  0.01 0.9 4 
3 

3T , d 90 220 5 

140000 185000 

3 , rad  /2  /2 N/D 

,3pr , planet radii 1.01 1.1 N/D 

4  0.01 0.5 N/D 
4 

4T , d 260 352 N/D 

10000-
80000 

10000-
80000 
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At first, we tested DE, MBH, DIRECT and MCS for an increasing number of 
function evaluations from 200,000 up to 1,600,000. DIRECT could not reach the 
highest number of function evaluations and was excluded from the comparison. DE 
and MBH were run 100 times, according to the testing procedure proposed above, 
and we recorded the number of solutions with an objective function below or equal 
to the reference solution. DE was run with 0.8F  , 0.75rC  , best search strategy, 

and a population of 140 individuals, while MBH was run with a l  equal to 10% of 
the range of the variables. The results are reported in Table 3.19. On such a 
complex search space a deterministic search like MCS cannot do better than 13 
km/s. DE and MBH instead can find solutions that are better than 9.467 km/s, the 
ESA reference one. The probability of success, however, is limited to maximum 
21% if DE and MBH are run on the whole search space. Furthermore, note that 
there is no statistical difference between the result of DE at 200,000, 400,000, 
800,000 and 1,600,000 function evaluations, suggesting that DE converges too fast. 
On the other hand the aim of this preliminary set of runs is not to test DE but to 
have a standard of comparison for the application of the incremental pruning of the 
search space. All the solutions found with DE and MBH are represented in Fig. 3.24 
(a) and (b) respectively, together with the reference solution, in the plane containing 
the departure date, in MJD2000, and the total v , in km/s. DE and MBH identify 
four main launch windows, with two of them containing solutions that are better 
than the reference one. Note that we compare solutions according to the total  
only, while the reference solution was designed to fulfil also other requirements. 

v

Fig. 3.25 shows the reference solution (a) together with tree other solutions (b, c, d) 
with lower overall  all projected in the ecliptic plane. v

 
 

Table 3.19. Comparison of global optimisation methods applied to the EVVMeMe 
case. 

Solver 
200,000 

evaluations
400,000 

evaluations 
800,000 

evaluations
1,600,000 

evaluations 
MCS, km/s 14.35 13.05 13.05 12.01 
DE, 100 runs 
< ESA (9.467 km/s) 16% 16% 21% 16% 
< MCS 100% 81% 86% 61% 
MBH, 100 runs 
< ESA (9.467 km/s) 4% 3% 7% 16% 
< MCS 89% 78% 82% 100% 
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 (a) DE (b) MBH 

Fig. 3.24. Solutions found by DE (a) and MBH (b) over all 100 runs with all-at-once 
approach. 
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 (c) Modified version (d) Different launch window 

Fig. 3.25. Projection on the ecliptic plane of the reference solution and of three 
improved solutions found with the all-at-once approach. (a) The reference 
solution; (b) An improved version for the same launch window; (c) A 
modified version; (d) An improved solution for a different launch window. 
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The pruning was performed on all the variables but the swing-by variables  

because in the specified range it has a very low impact. The number of resonant 
orbits, i.e. fixed number of revolutions per leg, was pre-assigned. In particular we 
use the following resonance strategy: [0, 2, 0, 1, 2] where each number represents 
the number of full revolutions of the spacecraft around the Sun after the DSM and 
before meeting the next planet. For example, the EV leg is not performing any 
complete revolution around the Sun (after the DSM), while the VV leg performs 2 
complete revolutions. The boundaries on the time of flight for each leg were 
computed as a function of the number of revolutions. In particular, assuming 
circular the orbits of the departure and destination planets of each leg, the time of 
flight is the period of the Hohmann transfer, between the two, times the number of 
revolutions while the upper bound is the period of the same Hohmann transfer times 
the number of full revolutions plus one. Note that, in principle, the trajectory model 
would not require the specification of the number of revolutions as the arc, 
propagated up to the DSM, can be as long as required. The resulting trajectory 
would have each DSM after the sequence of resonant orbits. This would make it not 
comparable to the ESA solution that has each DSM before the sequence of resonant 
orbits. However, in the velocity formulation model, the arc following the DSM is 
the solution of a Lambert’s problem and the number revolutions has to be specified 
explicitly.  

,p ir

The number of bins and number of function evaluations for each level of the 
incremental pruning are shown in Table 3.18. The aim of the test is to show how a 
space reduction of all the levels from 1 to 3 can improve the search with DE and 
MBH at level 4. For this reason, level 4 was not pruned. In general we can consider 
that the last level is the least significant for the pruning. MBH was run with a 
perturbation radius l  equal to 10% of the range of the variable at level . MACS 

was run with a population of 20 agents with 
iD

10popration  , and a  equal to  

of the range of the variables at level . For the restart of MBH we set the 
maximum number of trials to 30, while for MACS we use no partitioning at level 1 
and we partitioned only 

convtol 410

iD

  and the time of flight at each subsequent level. 
Special partial pruning criteria were used for the legs ending with Venus and 

Mercury. In particular, for the arrival conditions at Venus we use objective function 
in Eq. (3.17), with 1 km/s  , while for the arrival conditions at Mercury (last 
level) the objective function was: 

 
3

3
1

k
k

f v


v    (3.20) 

where  is the spacecraft velocity relative to Mercury at arrival. The pruning 
functions were selected based on the required effect of the gravity assist 
manoeuvres. In particular, Venus gravity manoeuvres are expected to maximise the 
change in the perihelion while the manoeuvres at Mercury, combined with the 
DSM, are supposed to minimise the relative velocity at Mercury. The pruning 
thresholds are on the value of the partial objective function, and are 4, 4.5 and 7 

v
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km/s for level 1, 2 and 3 respectively. The first threshold is set according to launch 
capabilities, the second accepts a DSM no larger than 0.5 km/s for the VV resonant 
flyby, while the third threshold estimates the arrival v  at Mercury to be lower than 
6 km/s. Table 3.20 reports the performance of the incremental pruning on the 
EVVMeMe case with pruning up to level 3 included. Note that the reference 
solution and the best solutions (all the ones better than the reference) are included in 
at least one of the boxes in the majority of the cases, in particular when the MACS 
is used to look for the feasible set. The higher reliability of MACS compared to the 
modified MBH is marginal and not statistically significant. On the other hand, 
MACS tends to generate a higher number of boxes. Note that the significance of the 
variance in the table has to be taken with care because the process is not necessarily 
Gaussian. The only thing that can be said is that already at level 3 the number of 
boxes is high despite the fact that many of them were clustered. The last row of 
Table 3.20 reports the coverage metric. The reproducibility of the pruning is quite 
good for both algorithms. Table 3.21 shows the percentage of success of DE and 
MBH on the residual space, in particular on the most promising box. As can be seen 
the increase in performance is considerable, reaching almost 100%, fully justifying 
the space reduction obtained with the incremental approach. Finally, Table 3.22 
reports the time of evaluation of the partial objective function at each level. Again, 
the lower cost of the partial objectives at lower levels leads to an overall gain in 
computational speed during the incremental pruning since a good deal of the 
function evaluations are used when exploring the lower levels. In particular, in this 
case 215,000 function evaluations were used to prune levels from 1 to 3 with 
MACS and 350,000 with MBH but the cost of each function evaluation was 
between 1/3 and 1/10 of the cost at level 4. 
 
 
Table 3.20. Incremental approach: performance on the EVVMeMe case over 100 runs. 

Performance index MACS MBH 
Inclusion of best solution 100% 94% 
Inclusion of ESA solution 91% 89% 
Pruned space (mean value) 97.81% 97.8% 
Number of blocks, average 53.1 45.21 
Number of blocks, standard deviation 19.48 15.21 
Average Coverage 80.1% 81.8% 

 
Table 3.21. Performance of DE and MBH on the box containing the ESA solution over 

100 runs. 

Solver 
10,000 

evaluations 
20,000 

evaluations 
40,000 

evaluations 
80,000 

evaluations 
DE 100 runs     
< ESA (9.467 km/s) 89% 91% 99% 99% 
MBH 100 runs     
< ESA (9.467 km/s) 32% 48% 72% 88% 
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Table 3.22. Average time to evaluate the partial objective functions, for each level. 
Level 1 2 3 4 

Time, ms 1.69 5.2 5.7 6.94 

3.8 Discussion 

In this chapter, we presented a simple approach to the design of multiple 
gravity assist trajectories. The approach decomposes the whole trajectory in sub-
problems of lower dimension and complexity and proceeds to reduce the search 
space incrementally, adding one leg at a time. This incremental space reduction, 
tested on a number of cases, demonstrated to significantly increase the chance to 
find good solutions at a relatively low computational cost: the probability of success 
of all tested optimisers on the pruned space is from two to six times higher and with 
a similar overall number of function evaluations. Furthermore, due to reduced 
computational cost of the evaluation of the partial objective functions, the total 
computational time of the incremental approach is lower even for the same number 
of function evaluations. Therefore, we obtained an increase in the reliability of the 
optimisation process (i.e. higher success rate) with a reduction of its computational 
cost. An additional advantage of the proposed incremental approach is the 
generation of a set of feasible solutions rather than a single optimal one. The 
feasible set corresponds to families of possible mission opportunities for different 
launch dates. Thus, the decision maker, or mission designer, is presented with 
multiple options together with an enclosure of their neighboring solution space. The 
amount of available information is, therefore, higher and would allow an easier 
identification of baseline and backup designs together with their robustness. In fact, 
the size of the neighborhood, or subset of solutions below a given threshold, can be 
seen as a measure of their sensitivity to small changes in the design parameters. 
These features will be extensively explioted for the case studies in the following 
Chapter 4. 

The critical aspects for an efficient implementation of the incremental solution 
of MGA trajectories are: the definition of specific partial objective functions for 
each incremental level and the definition of appropriate pruning criteria. 
Furthermore, the search for the feasible set can substantially change the 
performance. The two methods presented in this chapter, MACS and MBH, 
performed substantially in the same way for all the test cases. The main difference 
is that, while MACS can be used with discontinuous and noisy functions, MBH 
needs a smooth and continuous function. In both cases the incremental algorithm 
remains unchanged, therefore it is recommended to start with a simple search 
procedure, even a simple Multi-Start algorithm, if the partial objective functions are 
smooth and differentiable. 

Although the incremental procedure is generally applicable to all the trajectory 
models presented in this chapter, it was tested on the one model built with the 
velocity formulation because this model leads to an exponential growth of the 
possible alternative path with the number of swing-bys. Furthermore, we presented 
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a forward incremental procedure but, following the same principle, the procedure 
can be performed backward or forward and backward at the same time. 

 



 

4  
 
 
APPLICATION TO REAL CASE 

STUDIES 

The incremental pruning is used here to design parts of the ESA missions Laplace 
and BepiColombo. It will be shown that the method is suitable to find solutions that 
not only minimise the cost, but also meet other, more complex requirements. 
Moreover, the feasible sets and local optima found will be used for further 
investigations on the problem, therefore showing the value of the tool for 
interplanetary mission study and design.  

4.1 Introduction 

The test cases in this chapter aim at showing the applicability of the proposed 
incremental approach to the design of real missions. It will be shown how the 
incremental pruning method can be extended, without substantial modifications, 
first of all to take into account additional cost functions such as the relative velocity 
at the target planet, , and the total time of transfer, then to target planets as well 
as specific orbits. Another important point in preliminary mission design is the need 
for a set of trajectories that can be used for a trade-off analysis. In other words, it is 
required not only to find the globally optimal solution, but also a number of low-
laying feasible local optima. In this chapter it will be shown that the incremental 
pruning responds to this requirement. 

v

In contrast to the test cases in the previous chapter, here the aim is not to 
provide a comparative performance assessment of the incremental approach; 
instead, the computed solutions will be compared to the existing baseline solutions 
for each mission. An analysis of the solutions will follow to highlight their main 
features, as well as to draw some general conclusions that could help the search for 
similar solutions in similar applications. This will show that the incremental 
pruning is also useful for studying the MGA transfer problem. 

123 
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The test cases presented in this chapter are part of two missions currently under 
design: Laplace [35] and BepiColombo [31]. The initial conditions and objectives 
of the problems proposed were provided by the Mission Analysis section at ESA-
ESOC, and reflect the actual design state of the mission at the time when these tests 
were performed1. Therefore, they are very well representative of the real trajectory 
design problem. 

The tests were performed using 2 different machines: 
 Intel Core 2 Duo T5500 1.66 GHz equipped with 2 Gb of RAM, and 

running Windows Vista; 
 Sun Ultra 45 Workstation (UltraSPARC IIIi 1.6 GHz), and running Sun 

Solaris. 
Implementation details are given in Appendix A. 

4.2 Laplace Mission 

Laplace is a joint ESA-NASA-JAXA interplanetary mission to Europa and the 
Jovian system. The high-level scientific goals of the mission are to determine the 
conditions for the formation of the Jupiter system, understanding how Jupiter works 
and whether Europa is habitable [116]. The launch time-frame is 2016-2018. A 
NASA spacecraft and an ESA spacecraft are planned to be launched separately: the 
former will perform science around the rocky moons Io and Europa. The ESA 
orbiter, instead, will target the icy moons, Ganymede (G) and Callisto (C). 
Secondary objectives for this spacecraft will be a fly-by of Europa (releasing an 
Europa penetrator), a fly-by of a small body before Jupiter arrival, and the release 
of the JAXA magnetospheric orbiter [117]. 

A baseline scenario was proposed with a multi-gravity assist transfer from the 
Earth to Jupiter, with sequence Earth-Venus-Earth-Earth-Jupiter and an arrival date 
in October 2024. The baseline scenario foresees that, at arrival, a first Ganymede 
gravity assist (designated as GGA1 in the remainder of this chapter) will be 
performed to insert the spacecraft into a high elliptical orbit around Jupiter. A 
perijove raising manoeuvre will be required, to avoid the radiations at short distance 
from Jupiter. Three resonant swing-bys of Ganymede will follow (GGA2-GGA5) to 
reduce the orbital period, reduce the inclination, and reduce the infinite velocity 
with respect to Ganymede. At this point, a multiple swing-by tour involving 
Ganymede and Callisto will be exploited to reach Callisto with a low relative 
velocity. The spacecraft will perform a number of swing-bys of the moon to achieve 
low altitude coverage of the majority of the surface of Callisto, without orbiting 
around it. 

Finally, a transfer to reach Ganymede with low relative velocity will precede 
the Ganymede orbit insertion (GOI), during which science on Ganymede is 

                                                      
1 The test cases and studies that will be presented in this chapter were found during a visit of 
the author at the Mission Analysis Office (OPS-GFA) of ESA-ESOC (European Space 
Agency, European Space Operations Centre) in Darmstadt, Germany. 
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performed. Firstly, the magnetosphere is analysed while on an elliptic orbit, then the 
orbit is circularised into a low altitude orbit. 

The analyses in this chapter will focus on two particular segments of the ESA 
orbiter mission: the multiple resonant swing-bys of Ganymede (GGA2-GGA5) and 
the transfer from Ganymede to Callisto. 

4.2.1 Resonant Swing-bys of Ganymede 
This section will describe the optimisation of the resonant swing-bys of Ganymede 
(GGA2-GGA5) to reduce the velocity relative to Ganymede ( v ). The initial 
conditions of the tour at Ganymede are given by incoming conditions at Jupiter at 
the end of the interplanetary transfer from the Earth. 

The initial conditions are summarised in Table 4.1. The spacecraft is assumed 
to be at Ganymede (zero sphere of influence) and the position is known through the 
ephemerides of Ganymede. The orbit of the spacecraft before the first swing-by, 
and the orbit of Ganymede are represented in Fig. 4.1. The reference frame is the 
inertial Jupiter equatorial reference frame at epoch. 

 
 

Table 4.1. Initial epoch, velocity relative to Ganymede, orbital inclination and period 
for the GGA2-GGA5 transfer case. 

Variable Value 

0t  9230.8850 d, MJD2000 
(10 April 2025) 

,r hv ,2 km/s [-4.9487, 3.1372, -1.2934] 
i, deg 5.29 
P, d 179 
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Fig. 4.1. The initial orbit of the spacecraft (before the first G swing-by), in blue, and 

the orbit of Ganymede (in red). 
 

                                                      
2 The reference frame r-θ-h, sometimes referred to as RST, is the one having radial, 
transversal and out-of-plane unit vectors as axes. 
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The initial relative velocity with respect to Ganymede is 6 km/s in magnitude. 
The purpose of the resonant Ganymede sequence is to reduce the v  to 5 km/s, the 

inclination to 0 deg, and the orbital period to 3 periods of Ganymede ( ), 

i.e. 21.45 days, at minimum  and time cost. 

7.15 dGP 
v

INCREMENTAL SOLUTION 

The application of the incremental approach for resonant swing-bys is tricky. In an 
MGA transfer without any resonant swing-by, the DSMs are mostly used to change 
the  with respect to a given body, but very often ballistic transfers are still 
possible (with some exceptions: see last sub-section of Section 

v
4.2.2). This means 

that minimising the  and pruning on v v  is often a good strategy to find ballistic 
or quasi-ballistic solutions. Swing-bys can also change the v  with respect to other 

planets. DSMs can then be introduced to correct slightly the v , without changing 

much the shape of the trajectory. This is also the reason for which the  may not 
be taken into account before the last level of the transfer (the validity of this will be 
shown in Section 

v

4.2.2, though a non-resonant MGA transfer case). 
In resonant swing-by sequences, each swing-by can change the orbital 

parameters of the spacecraft (e.g. inclination, semi-major axis and eccentricity) but 
not the  with respect to the planet. Deep space manoeuvres are used to approach 

the planet with the appropriate 

v
v ; therefore, the v  magnitude of each DSM is not 

enough to prune the search space incrementally, leg by leg. If only the ’s were 
considered, the pruning would not be effective, consequently ending up with a large 
number of clusters covering great part of the search space. A better choice is to 
introduce some the target parameters of the problem (e.g. inclination and v ) into 

the objective and the pruning functions together with the 

v



v ’s. The objective 
function can be defined as the sum of three terms: 

      , , ,l v l i l v lf g v g i g v
       (4.1) 

where ,v lg


 is a function of the v  at the end of level l, ,i lg  depends on the 

inclination of the orbit at the end of the trajectory and ,v lg  is a function of the total 

 of the trajectory up to the level l. The functions g have the general form: v
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and depend on the shaping parameters  and , r and s. As shown in lu uu Fig. 4.2, the 

general shape is a composition of a low laying basin within the interval   , 

with an exponential growth outside this interval. The basin has a depth of 1, and the 
bottom of it is almost flat and very close to zero. 

,l uu u

As it can be seen from Fig. 4.2, s is changing the shape of the edges of the 
function at the borders of the basin, while r is a scaling factor for the exponential 
part. If either  or  are set, respectively, to plus or minus infinity, one obtains 
the functions in 

lu uu
Fig. 4.3, where the basin is unbounded on either side. 

The resonant sequence is made of 3 swing-bys of Ganymede, giving an 
incremental problem with 3 levels. Since the initial conditions are given at 
Ganymede, before its swing-by, then the solution vector is the one in Eq. (2.19) in 
Section 2.2.4: 

  1 ,1 1 1 2 ,2 2 2 3 3 3 3, , , , , , , , , , ,p pr T r T r T        x

Bounds for this problem are in Table 4.2, where 1,2,3i  . The values of the 
parameters  and  in the objective function, for each level, are in lu uu Table 4.3. 
Parameters r and s were kept constant for all the levels, as shown in Table 4.4. 
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 (a) r = 10, s = 0.1 (b) r = 0.1, s = 10 (c) r = 10, s = 1 

Fig. 4.2. Shape of the function g(x) (Eq. (4.2)) for ul = 0, uu = 1, and different values 
of r and s. 
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Fig. 4.3. Shape of the function g(x) (Eq. (4.2)) when ul = –∞ (a) or uu = +∞ (b). 
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Table 4.2. Bounds for the GGGG transfer case. 

Variable LB UB 

1T , d 40 100 

2T , d 20 60 

3T , d 20 21.5 

,p ir , PR  1.1 3 

i  0.01 0.9 

i , rad 2  6  

 
Table 4.3. Parameters a and b for the objective function. 

 ,v lg v
    ,i lg i   ,v lg v   

Level l 
lu , km/s uu , km/s lu , deg uu b, deg lu , km/s uu , km/s 

1   5.8   5.5   0.07 

2   5.6   5   0.14 

3 4.98 5.02 –0.02 0.02   0.16 
 

Table 4.4. Parameters r and s for the objective function. 
l = 1, 2, 3 r s 

 ,v lg v
   10 0.5 

 ,i lg i  1 0.1 

 ,v lg v   10 0.1 

 
For the incremental pruning process, the Multi-Start optimisation was used, 

because it was shown to be reliable and simple to use in terms of tuning parameters. 
The solution is considered feasible (and thus the local optimisation stopped) as soon 
as the objective value falls below 0.5. This ensures the solution to be inside the low-
laying basins of all the three functions  ,v lg v

  ,  ,i lg i  and  ,v lg v  . For both 

level 1 and 2, the pruning function was set as: 

   0.5i i if  x . 

and the boxes are generated by the clustering technique using the Mean Shift 
algorithm. This technique was chosen, over the others, because, although produces 
boxes that include some parts of the non-feasible space, it is suitable to identify 
multiple solution families (as it will be shown throughout the chapter). 

RESULTS 
Fig. 4.4 (a) and (b) show the projections of the solutions and the clusters along 

  (a) and  2 2  (b) after pruning level 2. It appears that solutions are 

clustered by time of flight. This is due to their different resonances, as it will be 
explained shortly. 

 1 1,T  ,T
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 (a) Projection along α1, T1 (b) Projection along α2, T2 

Fig. 4.4. Projections of solution set and feasible regions after pruning level 2. 
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Fig. 4.5. Total Δv, inclination and final relative velocity at G for the GGGG 

sequence. Only solutions with Δv lower than 150 m/s are shown. 
 
Solutions found after optimising level 3 are shown in Fig. 4.5, in terms of , 

 and inclination i at the last encounter. The figure presents only solutions having 

. 

v
v

v 150 m/s

Note that all the solutions have a v  which is very close to the objective of 5 
km/s. This means that this requirement is overall fulfilled with good accuracy. Note 
also that there are two solution families. One family converged to a value of i very 
close to 0 deg, while a second family converged to about 0.12 deg. 
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Fig. 4.6 shows the  and total time of flight for the solutions with 
 and . As a comparison, the red dot represents the baseline 

solution designed by the European Space Agency. The plot shows that alternative 
solutions exist with a lower 

v
m/s0.15 degi  150v 

v  cost and comparable transfer time together with 
even cheaper solutions for longer time of flight. A green line represents the 
envelope of the solutions that are Pareto-optimal. Note that, because of the 
resonance constraint, the total time of flight can assume only a discrete number of 
values. 

Fig. 4.7 shows only the family of solutions with 0.01degi  . The number of 
solutions is considerably lower. Furthermore, some values of total time of flight are 
missing. This behaviour can be explained by looking at the resonances of the 
solutions. 

If the analysis is restricted to the transfers taking less than 120 days and less 
than 150 m/s of total , the solutions can be classified with respect to their 
resonances as in 

v
Fig. 4.8. The colour code corresponds to the number of revolutions 

of Ganymede around Jupiter between each consecutive pair of swing-bys. Since the 
spacecraft only performs one revolution around Jupiter in between two subsequent 
swing-bys, then the resonances are of type 1:n where n is the number revolutions of 
Ganymede. 

 

 
Fig. 4.6. Total Δv and total time of flight for GGGG solutions with final inclination 

lower than 0.15 deg and total Δv lower than 150 m/s. The red dot 
represents the baseline solution chosen by ESOC for the Laplace mission. 
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Fig. 4.7. Total Δv and total time of flight for GGGG solutions with final inclination 

lower than 0.01 deg and total Δv lower than 150 m/s. This set of solutions 
corresponds to only one of the two families in Fig. 4.5. 

 

 
Fig. 4.8. Total Δv and total time of flight for the GGGG solutions with total time of 

flight lower than 120 days and total Δv lower than 150 m/s. The red dot, in 
the 7 – 4 – 3 family, represents the baseline solution chosen by ESOC for 
the Laplace mission. 
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Fig. 4.9. Time of flight of the first and second leg, expressed in periods of 

Ganymede (PG), for each solution. Time of flight of the third leg is 3PG for 
all the solutions. 

 
In Fig. 4.8, the number n is reported for each one of the three legs forming a 

triplet of numbers. Each family of solutions with the same time of flight has the 
same set of resonances for the three swing-bys and therefore the same triplet. Note 
that the last resonance in each family is 3, since this is the required target value. 

If n takes only integer values within a triplet (for example 7 – 4 – 3, 8 – 4 – 3, 7 
– 5 – 3), then the swing-by always occurs at the same position along the orbit of 
Ganymede. When a non-integer number of resonances is present in the triplet (e.g. 
7 – 4.3 – 3), the spacecraft is changing the position of the swing-by, switching to 
the other orbital intersection. This also means that if a given family has an odd 
number of non-integer resonances, then the last Ganymede encounter occurs at a 
different point along the orbit. 

Fig. 4.9 represents the same solutions of Fig. 4.8, with the same colours 
according to the resonances, in a plane with the first and the second resonance, 
being the third always equal to 3, for all the solutions. 

An interesting aspect of this analysis is that solutions belonging to the same 
family of resonances have different costs. For example, Fig. 4.10 illustrates the 
trajectory of the cheapest and most expensive solution for the families 7 – 4 – 3, 8 – 
4.3 – 3, and 7 – 4.3 – 3. The same figure shows also the v  (in m/s) for each DSM. 
Cheap solutions perform a significant manoeuvre after the first swing-by, while the 
subsequent legs are quasi-ballistic. On the other hand, expensive solutions apply the 
major  after the second swing-by. Therefore, it is more convenient to change the 

 as soon as possible while the apocentre of the orbit is still high. 
v

v
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Fig. 4.11, Fig. 4.12 and Fig. 4.13 show the trajectory for the cheapest solution 
in 9 – 4 – 3, 11 – 5.2 – 3, 9.2 – 4.8 – 3 families respectively. Correspondingly, 
Table 4.5, Table 4.6 and Table 4.7 show the v  at each swing-by, the  for each 

leg and the evolution of the orbital inclination following each event. The  is 
changed to the target value of 5 km/s with the first DSM while the inclination 
reaches its target value after the second or third swing-by. 

v
v

The three different solutions also make clear the reason for the existence of two 
different values of inclinations (see again Fig. 4.5). Trajectories in the family 9 – 4 
– 3 and 9.2 – 4.8 – 3, as well as all other families with an even number of non-
integer resonances, can only achieve a minimum inclination of 0.12 deg, that is the 
inclination of Ganymede’s orbit. On the other hand, solutions that are changing the 
swing-by position on the other intersection, can achieve a much smaller inclination, 
being that point closer to the line of nodes of Ganymede’s orbit. 

 

 
Fig. 4.10. Projection on the x-y plane of the cheapest and most expensive solution in 

three resonance families. The three numbers next to each plot show the 
magnitude of each DSM in the solution, in m/s. 
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Fig. 4.11.  Projection in the x-y plane of 
the cheapest 9 – 4 – 3 
solution for the GGGG case. 

Table 4.5.  Evolution of Ganymede 
relative velocity and 
inclination, and applied Δv, for 
the solution in Fig. 4.11. 

 , km/sv , km/sv  i, deg 

SB 1 6  3.1 

DSM 1  78 3.8 

SB 2 5  2.6 

DSM 2  0 2.6 

SB 3 5  0.1 

DSM 3  1 0.1  
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Fig. 4.12. Projection in the x-y plane of 
the cheapest 11 – 5.2 – 3 
solution for the GGGG case. 

Table 4.6.  Evolution of Ganymede 
relative velocity and 
inclination, and applied Δv, for 
the solution in Fig. 4.12. 

 , km/sv , km/sv  i, deg 

SB 1 6  2.3 

DSM 1  67 2.8 

SB 2 5  0.1 

DSM 2  0 0.1 

SB 3 5  0 

DSM 3  0 0  
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Fig. 4.13.  Projection in the x-y plane of 
the cheapest 9.2 – 4.8 – 3 
solution for the GGGG case. 

Table 4.7.  Evolution of Ganymede 
relative velocity and 
inclination, and applied Δv, 
for the solution in Fig. 4.13. 

 , k /sv ,  km/svm   i, deg 

SB 1 6  2.6 

DSM 1  139 1.9 

SB 2 5  0.1 

DSM 2  0 0.1 

SB 3 5  0.1 

DSM 3  0 0.1  

 
The number of function evaluations and the time required to prune and 

optimise the complete problem is shown in Table 4.8. 
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In order to test the sensitivity to the target value of v , a second analysis was 

run with , and the same value of target inclination (0 deg) and period 
(3 periods of Ganymede). The objective function and all the parameters were kept 
unchanged, except for  and  in  (see 

4.5 km/sv 

lu uu iA Table 4.9). This forces the  to be 
very close to 4.5 km/s after the third DSM. 

v

Fig. 4.14 shows the  and total time of flight for the solutions with 
, 

v
0.15 degi  150 m/sv  , and final v  with respect to Ganymede between 4.48 

and 4.52 km/s. As a reference only, the red dot represents the baseline solution 
(whose final v  is 5 km/s). The figure shows that for a lower value of the , short 
transfer solutions do not exist anymore. There are solutions cheaper than the 
baseline but for longer flight times. 

v

 
 

Table 4.8. Number of function evaluation and computational time for each level of 
the GGGG transfer problem. 

Level 
No. objective function 

evaluations 
Time 
Intel 

Time 
Sun 

1 118,432 243 s 607 s 
2 423,688 22 min 54 min 
3 2,040,725 133 min 332 min 

 
 

Table 4.9. Parameters ul and uu for the objective function at level 3. 

 ,v lg v
   

Level l 
lu , km/s uu , km/s 

3 4.48 4.52 
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Fig. 4.14. Total Δv and total time of flight for the GGGG solutions with final 

inclination lower than 0.15 deg, total Δv lower than 150 m/s, and final 
relative velocity to Ganymede equal to 4.5 km/s. The red dot represents the 
baseline solution chosen by ESOC for the Laplace mission: note that the 
final relative velocity for this solution is 5 km/s. 

4.2.2 Ganymede to Callisto Phase 
This test case is about the design of the transfer from Ganymede (G) to Callisto (C), 
i.e. the GGA5-C phase of the Laplace mission. For this test case, it is assumed that 
the incoming conditions (velocity, time and position) at the fifth Ganymede swing-
by are known, and represent the initial values for the MGA transfer to Callisto (see 
Table 4.10). These values were chosen to match the baseline solution provided by 
ESA for ease of comparison. The reference frame for this problem is the inertial 
Jupiter equatorial reference frame. 
 
Table 4.10. Initial epoch and initial velocity relative to Ganymede for the GGA5-C 

transfer case. 

0t  9331.2989 d, MJD2000 (19 July 2025) 

,r hv , km/s [1.6234, 4.8384, -0.0001] 

 
The aim of the transfer is to reach Callisto with a relative velocity as close as 

possible to 2 km/s, in magnitude, at minimum v  cost. Only Ganymede and 
Callisto are considered. An additional requirement is to minimise the total time of 
flight to reduce mission operations cost. A further requirement would be to maintain 
the radius of the perijove as high as possible to avoid the belts of highly charged 
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particles surrounding Jupiter. This constraint was not considered in this analysis 
although it could have been used for further pruning of the solution space. 

SEQUENCE SELECTION 
As multiple celestial bodies are available, the selection of the sequence of swing-
bys is a key element of the design process. The algorithm for generating and 
assessing the possible sequences was run considering possible swing-bys of G and 
C. The other parameters were set as following: 

 

,
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sb max

rsb max

back max

backspacing max

n

n

n

n


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The list of radii of pericentre of the swing-bys was set to: 

  1.1 1.5 2p r  

expressed in radii of the planet where the swing-by happens. The first swing-by of 
the sequence is at G because the initial conditions are given at G before its swing-
by. The sequences found by the algorithm, and the minimum value of the  at 
arrival at C for each sequence, are shown in 

v
Table 4.11. The sequences in bold were 

selected as candidates for further study and optimisation with the incremental 
pruning 

The reason for choosing the minimum value of v  and not, for example, the 
one closest to the target of 2 km/s is that it is more likely that the full-model 
problem can reach the target of 2 km/s with low DSM v . 

 
 

Table 4.11. Sequences, radii of pericentre of each swing-by and minimum achievable 
relative velocity at C. In bold, the sequences that were selected. 

Sequence ,p Pr R  (direction) v  at C, km/s 

G C    1.1 (-)    3.78 
G G C   2 (-) 1.1 (-)   2.42 
G C C   1.1 (-) 2 (-)   3.78 
G G C C  2 (-) 1.1 (-) 1.1 (+)  2.42 
G C G C  1.1 (-) 1.5 (+) 2 (-)  1.77 
G C C C  1.1 (-) 2 (-) 2 (-)  3.78 
G G C G C 1.1 (-) 2 (+) 2 (+) 1.1 (-) 2.43 
G C G G C 2 (+) 2 (+) 1.1 (-) 1.1 (-) 2.60 
G C G C C 1.1 (-) 1.5 (+) 2 (-) 2 (+) 1.77 
G C C G C 2 (-) 2 (-) 1.1 (+) 1.1 (-) 1.95 
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INCREMENTAL SOLUTION 
The trajectory starts with a resonant swing-by of Ganymede, thus the solution 
vector is defined as (see Eq. (2.19): 

 , 1 ,1 1 1 , ,, , , ,..., , , , ,..., , , ,
legs legs legs legsp i p i i i n p n nr T r T r T        x n

sequ
ive functions for each level (except the last one, the complete 

problem) were set to: 

 

where  can be either 2, 3 or 4, depending on the length of the selected legsn

ence. 
The partial object

1i

, 1... 1
l

l i legsf v l n     (4.3) 

The optimiser was stopped when all the iv  of each leg were below 100 m/s 
each. An analogous condition was set as a pruning threshold: a solution was 
considered feasible if all the iv  were below 100 m/s. This translates in the 

llowing pruning criteria and thresholds: 

  (4.4) 

imisation coupled with Mean Shift clustering were used to prune 
the s

 it was decided to use one of the following four ways of tackling multiple 

1. The objective  and 

th

fo

  100 m/s, 1,..., , 1,..., 1v i l l n      xl l i legs

Multi-Start opt
olution space. 
The transfer from Ganymede to Callisto has multiple objectives and it would be 

natural to employ a multi-objective optimisation heuristic. However, the pruning 
process is based on the evaluation of a single objective per level. Therefore, rather 
than extending the incremental algorithm to deal with multi-objective problems, in 
this work
criteria: 

 function was casted into a weighed sum of the total v

 2
2 km/sv  . The weight was kept fixed during the optimisation. 

2. A constrained optimisation was set, with e objective of minimising the 
total v , under the constraint that 4 km/sv  . This approach is 
computationally more expensive that the single objective, unconstrained 
problem, because of the evaluation of the constraint function. 

3. The total v  is minimised without taking into account the v  at all. 
4. The objective function was defined as in point 1, but the weight was 

included in the solution vector, as an additional free parameter of the 

C sequence have general validity and can be 
exte  o

optimisation. 
The four different approaches were applied to the last (third) level of the 

GCGC transfer case, after having pruned the search space at level 1 and 2 as before. 
The results found for the GCG

nded to the ther sequences. 
The total v , total time of flight and v  at C, for all the solutions found by the 

four different approaches, are plotted in Fig. 4.15. The solutions can be grouped 
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into six families according to the total time of flight: plots in Fig. 4.16 represent 
each one of the first four families, those with shorter time of flight. 

All four approaches generate the solution circled in red in Fig. 4.16, which is 
the baseline for the Laplace mission. The constrained and augmented approaches 
(green and black dots), yield results of similar quality but are computationally more 
expensive than the others. The approach with free v  (blue dots) presents a high 

number of solutions with very high v , as expected, meaning that computational 
time was spent looking for solutions which are not very interesting for this test case. 

It was then decided to use an objective function weighing the v  and the  in 
the following form: 

v

  (4.5)    2
2 km/sii

f v v    x

The value of   was set, through a rule of thumb, to 0.25, considering the order 
of magnitude of the two terms in objective function. 

The following sub-sections will present the results of the incremental pruning 
process of the selected sequences and the solutions found following the subsequent 
optimisation of the residual search space. 

 

30 40 50 60 70 80 90 100 110 120 130
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6  

T otal T , d

 

v 
 a

t 
C

, 
km

/s

v


 weighed in obj. fun.

v


 constrained < 4km/s

v


 free

Weight  of v


 as optim. par.

 
Fig. 4.15. Final relative velocity at C and total time of flight of the solutions found 

using the four different objective functions. The solutions resulted to be 
clustered into six families according to the total time of flight. 
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Fig. 4.16. Final relative velocity at C and total Δv of the solutions found using the 
four different objective functions. Each plot refers to one family of 
solutions visible in Fig. 4.15, according to the total time of flight T. 

 

RESULTS 
In the following sections, we will present the results of the incremental pruning for 
each one of the planetary sequences highlighted in Table 4.11. 

Sequence GCGC 

The global bounds for the problem were set as in Table 4.12. The bounds on   
were fixed according to the information on the deflection given by the energetic 
approach. Fig. 4.17 (a) and (b) show the feasible set at level 1 after pruning level 2: 
the solutions are clustered along the coordinate  (see 1T Fig. 4.17 (a)) and form two 

distinct structures in the space of the first swing-by 1 ,1, pr    (see Fig. 4.17 (b)). 

Two sets of solutions to the complete transfer problem are represented in Fig. 
4.18 and Fig. 4.19. The red dots identify the solutions obtained with the incremental 
approach, while the blue solutions are the reference solutions computed with a 
systematic search with a planar trajectory model and tangential v  of discrete 
magnitude located either at the pericentre or at the apocentre [118]. The blue 
solutions are not locally optimal, while the red solutions are locally optimal. Even 
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in this case, solutions can be grouped in families according to the total time of 
flight. For each family the red solutions have lower values of the total  
compared to the blue solutions. 

v

 
Table 4.12. Bounds for the GCGC transfer case. 

Variable LB UB 

iT , d 3.5 45 

,p ir , PR  1.1 3 

i  0.01 0.9 

1 , rad 2  2  

2 , rad 2  3 2  

3 , rad 2  2  

 

 

 (a) Projection along γ1, rp,1 (b) Projection along α1, T1 

Fig. 4.17. Projections of solutions and feasible regions at level 1 after pruning level 2. 
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 (a) Δv vs. v∞ (b) Δv vs. T 

Fig. 4.18. GCGC sequence: comparison between ESOC (blue) and incremental (red) 
solutions. Only solutions with relative velocity at C lower than 2.5 km/s 
and Δv lower than 300 m/s are represented in the figure. 
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Fig. 4.19. GCGC sequence: comparison between ESOC (blue) and incremental (red) 

solutions. Only solutions with relative velocity at C lower than 2.5 km/s 
and Δv lower than 300 m/s are represented in the figure. 

 
Table 4.13. Characteristics of the baseline GCGC solution. 

1T , d 17.5

2T , d 13.8

3T , d 5.1
Total v , m/s 0
Total time of flight, d 36.4
v  at C, km/s 1.96

 
As stated before, the solution chosen as a mission baseline by ESA has been 

also found by the incremental pruning and subsequent optimisation. Its 
characteristics and trajectory are represented in Table 4.13 and Fig. 4.20 
respectively. 

The number of function evaluations required to obtain these solutions, level by 
level, and the corresponding computational time, are shown in Table 4.14.  
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Fig. 4.20. x-y projection of the baseline GCGC solution. 

 
Table 4.14. Number of function evaluation and computational time for each level of 

the GCGC transfer problem. 

Level 
No. objective function 

evaluations 
Time 
Intel 

Time 
Sun 

1 61,082 118 s 295 s 
2 418,150 21 min 53 min 
3 770,508 54 min 135 min 

 

Sequence GGCC 

The bounds used for this sequence are in Table 4.15. The GGCC sequence was 
tackled in the same way of the GCGC. Results in terms of relative final velocity, 

 and total transfer time are in v Fig. 4.21 and Fig. 4.22 (red dots). Again, a 
comparison with a systematic approach (blue dots) is shown. 
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Table 4.15. Bounds for the GGCC transfer case. 

Variable LB UB 

iT , d 3.5 45 

,p ir , PR  1.1 3 

i  0.01 0.9 

1 , rad 2  2  

2 , rad 2  2  

3 , rad 2  3 2  
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Fig. 4.21. GGCC sequence: comparison between ESOC (blue) and incremental (red) 

solutions. Only solutions with relative velocity at C lower than 2.5 km/s 
and Δv lower than 300 m/s are represented. 
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 (a) Δv vs. v∞ (b) Δv vs. T 

Fig. 4.22. Two projections of Fig. 4.21. 
 

Sequence GGC 

This sequence generates an incremental problem with only 2 levels. The associated 
bounds are in Table 4.16, and solutions found are in Fig. 4.23. Among all the 
solutions of this case, a quite promising one was found: it is circled in Fig. 4.24. 
This solution arrives at C with a very low v , compared to all the other solutions, 

and a low total v. Furthermore, it was noted that  was exactly 3.5 days, meaning 
that the solution hit the lower bound during the optimisation. Removing this 
constraint and re-starting the optimiser led to a ballistic solution, although with a 
slightly higher . The characteristics of this new solution are summarised in 

2T

v Table 
4.17, and its trajectory in Fig. 4.25. 

 
Table 4.16. Bounds for the GGC transfer case. 

Variable LB UB 

iT , d 3.5 45 

,p ir , PR  1.1 3 

i  0.01 0.9 

1 , rad 2  3 2  

2 , rad 2  3 2  
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Fig. 4.23. GGC sequence: comparison between ESOC (blue) and incremental (red) 

solutions. Only solutions with relative velocity at C lower than 2.5 km/s 
and Δv lower than 250 m/s are represented in the figure. 

 

 

 (a) Δv vs. v∞ (b) Δv vs. T 

Fig. 4.24. Two projections of Fig. 4.23. The red circle identifies the promising 
solutions with an active constraint on time of flight on the second leg. 

 
Table 4.17. Characteristics of the re-optimised GGC solution. 

1T , d 31.4

2T , d 3.4
Total v , m/s 0
Total time of flight, d 34.8
v  at C, km/s 2.17
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Fig. 4.25. x-y projection of the GGC solution after re-optimisation with a wider 

lower bound on time of flight for the second leg. 
 

Table 4.18. Some examples of optimal GGC solutions. 

v , m/s v  at C, km/s 

18 2.14 
45 2.09 
59 2.07 
68 2.06 

 
The second leg has a very short time of flight of 3.4 days. Such a short leg 

represents an issue for two reasons. The first is the available time to operate the 
spacecraft from ground. The second is the effectiveness of the DSM at changing the 
terminal relative velocity with respect to Callisto. This means that the magnitude of 
the DSM can become approximately equal to the gain in relative velocity at C. A 
set of alternative solutions, with different v  at C, were found, by changing the 

weight   in the objective function. The achievable v , together with the cost of the 
(optimised) transfer is shown in Table 4.18. 

Sequence GCGCC 

This case has 4 levels to be pruned. The time of flight for each leg was upper 
limited to 24 days to limit the total transfer time. Bounds are presented in Table 
4.19, and the resulting solutions are shown in Fig. 4.26 and Fig. 4.27. 
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Table 4.19. Bounds for the GCGCC transfer case. 

Variable LB UB 

iT , d 3.5 24 

,p ir , PR  1.1 10 

i  0.01 0.9 

i , rad 2  3 2  
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Fig. 4.26. GCGCC sequence: comparison between ESOC (blue) and incremental 

(red) solutions. Only solutions with relative velocity at C lower than 3.5 
km/s and Δv lower than 450 m/s are represented in the figure. 
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Fig. 4.27. Two projections of Fig. 4.26. 
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ANALYSIS OF SOLUTION FAMILIES FOR SEQUENCE GCGC 
In this section, the solutions for the GCGC sequence (taken as a representative) will 
be classified according to two criteria. The first one makes use of the Tisserand 
plane (see Appendix E). Then, solutions will be classified total v, total time of 
flight, and final relative velocity. 

The iso- v  lines for Ganymede and Callisto are represented in Fig. 4.28, as 
well as the starting condition of the spacecraft (blue star). By means of a graphical 
analysis of the Tisserand plane, we can deduce that the spacecraft will perform one 
swing-by of Ganymede, changing mainly the period of its orbit, then one of 
Callisto, changing mainly the radius of pericentre of its orbit, and then the last 
swing-by of Ganymede, again changing mainly the period. 

All the trajectories can be grouped into 4 types, according to the path they 
follow in the Tisserand plane. The main properties of each type are summarised in 
Table 4.20. Despite the sequence includes three swing-bys, only the first two (GC) 
will be included in this classification: in fact, the last swing-by (G) reduces the 
period of the orbit in all the cases.  

The four plots in Fig. 4.29 show the optimal solutions for the GCGC transfer 
case: each plot refers to a different family according to the total time of flight; the 
colour of each point refers to the type of solution in the Tisserand plane, as in Fig. 
4.28. 

 

 
Fig. 4.28. Representation of the four types of solutions on the Tisserand plane. The 

blue star represents the initial orbit of the spacecraft, right before the first 
G swing-by. The target is to reach C on the 2 km/s iso-v∞ line. 
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Table 4.20. Classification of the solutions according to the change of orbital period due 
to first swing-by of G and the change in radius of pericentre due to the first 
swing-by of C. The corresponding path in the Tisserand plane for each 
type is shown in Fig. 4.28. 

Type G (1) P  C (1) r  

 1 > 0 > 0 
 2 > 0 < 0 
 3 < 0 > 0 
 4 < 0 < 0 
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Fig. 4.29. Representation of the four types of solutions to the GCGC on the v∞-v 
plane. The red circle in (a) represents the GCGC baseline solution. 

 
By looking at the position of the solutions of each type, we note that most of 

type 1 (red) solutions are in the 60~80 day family, and they are not very good 
concerning both the  and the v v . 

Type 2 solutions are mostly clustered in the 60~80 day family, having a quite 
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good solutions according to  and v v , but the short solutions (under 45 days) are 
all of type 3. Type 3 is also the baseline solution (highlighted with a red circle in 
top left plot of Fig. 4.29). 

We can conclude that only the paths of type 1 and type 2 in the Tisserand plane 
have similar features: paths of type 3 and 4 in Tisserand plane generate a multitude 
of solutions with very different characteristics. Unfortunately, the most interesting 
solutions belong to these latter two types. We can then say that for this kind of 
problems, the Tisserand plane can provide a hint to find good solutions, but it is in 
no way a mean to uniquely identify good solutions. Additional tools are needed, 
that consider a more complete trajectory model. 

Following the analysis with the Tisserand plane, we would like to investigate 
the similarities of solutions which have comparable parameters of merit (namely 
total , time of flight and final relative velocity): in other words, we would like to 
see whether solutions which are comparable with regards to certain final conditions 
also have a similar trajectory in the space and/or a similar representation in the 
Tisserand plane. The important point is that, if two solutions have very close 
parameters of merit, and also similar trajectory, then the solutions are overall 
similar, and can be considered as one. On the other hand, if two solutions have 
similar parameters of merit, but different trajectories, then a trade-off should be 
done, based on other considerations, for ranking them and deciding which one (if 
any) is better. 

v

We showed before (see Fig. 4.15) that all the solutions for the GCGC sequence 
are grouped into ideal “families” according to their total time of flight. We can use 
this consideration to base a classification of the solutions: we want to investigate 
whether solutions with similar total time of flight have similar trajectory and/or path 
in the Tisserand plane. 

The first step, then, is to cluster the solutions into families according to their 
time of flight. This was done using Mean Shift, the same cluster algorithm used in 
the incremental method. The bandwidth was tuned such to obtain a reasonable 
number of clusters. Resulting clusters are shown in Fig. 4.30, which shows the 
space of the considered parameters of merit, and Fig. 4.31, which shows two 
projections of the previous figure. It is clear that the driving parameter for 
clustering is the time of flight: even if solutions which have similar time of flight, 
but considerably different other parameters, are not grouped together. 

We consider only some of all these clusters, laying close one another, for 
further study. Fig. 4.32, which is a magnification of Fig. 4.30, highlights these 
clusters. For each one of the considered clusters, all the solutions within the cluster 
will be plotted in the same graph, to have a quick look of their similarities. Both the 
trajectory and the Tisserand plot will be assessed. If the solutions are overlapping 
one another, then they can be considered similar, and further investigation can be 
done. The purpose of the figures, then, is not to distinguish every single trajectory 
or path, but only to have an idea on their overlapping in either plot. 
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Fig. 4.30. Solutions clustered according to the total transfer time, in the space Δv-T-

v∞. 
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Fig. 4.31. Two projections of Fig. 4.30. 
 
The analysis is presented in the following series of figures (from Fig. 4.33 to 

Fig. 4.36), each one made of two plots. Each figure refers to one cluster of those 
numbered in Fig. 4.30, Fig. 4.31 and Fig. 4.32. In these figures, plots (a) represent 
the x-y projection of the trajectories corresponding to all the solutions in the cluster 
the figure refers to. Plots (b) are the Tisserand graphs of all the solutions in the 
same cluster. So both plots represent, in a different way, the same set of solutions, 
superimposed in the same picture. 

In the trajectory plot, arcs in black are propagated (so before the DSM), while 
arcs in blue are Lambert’s (so after the DSM). Each path in the Tisserand plane, 
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instead, is made of black curves and light blue lines. The line is black if the change 
in orbital parameters is due to a swing-by (and thus along an iso- v  line), while 
displacements on the Tisserand plane due to a DSM are represented in light blue. 



 

 
Fig. 4.32. Magnification of an area of Fig. 4.31 (b) to better visualise the clusters 

which will be considered. 
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Fig. 4.33. Projection of the trajectory and corresponding path in the Tisserand plane 
for the solutions in cluster 2. 
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Fig. 4.34. Projection of the trajectory and corresponding path in the Tisserand plane 
for the solutions in cluster 21. 
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Fig. 4.35. Projection of the trajectory and corresponding path in the Tisserand plane 
for the solutions in cluster 26. 
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Fig. 4.36. Projection of the trajectory and corresponding path in the Tisserand plane 
for the solutions in cluster 6. 
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Fig. 4.33 and Fig. 4.34 refer to clusters 2 and 21 respectively. These clusters 
include solutions which have similar time of flight, but are considerably different 
with respect to  and v . As it is noticeable from the figures, the solutions are 
quite different, with respect to both the trajectory and the Tisserand plane: no 
overlapping can be spotted. In cluster 26 (

v 

Fig. 4.35), instead, solutions are partially 
overlapped, while in cluster 6 (Fig. 4.36) the overlapping is complete. These 
clusters, as opposed to the previous two, are very small: all the solutions they 
contain have very similar time of flight, v  and v . 

We can conclude that different solutions exist with very similar time of flight, 
and thus the time of flight alone is not representative of a family of solutions. It 
seems instead that solutions with similar parameters of merit – all of them – have 
also similar trajectory and Tisserand graph. 

In order to verify this last statement, solutions have been re-clustered according 
to their vicinity in the space total time of flight, v , v . This time, the time of 
flight was not favoured in any way with respect to the other two parameters of 
merit. The resulting clusters, which are more and smaller than before, are shown in 
Fig. 4.37 and Fig. 4.38. Each cluster now includes solutions which have all three 
parameters of merit very similar one another. 

The clusters considered for this second analysis are those appearing in Fig. 
4.39, which is a detail of Fig. 4.37. 
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Fig. 4.37. Tight clustering of the solutions in the space Δv-T-v∞. Most of the clusters 
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Fig. 4.38. Two projections of Fig. 4.37. 
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Fig. 4.39. Magnification of an area of Fig. 4.38 to better visualise the clusters which 
will be considered. 

 
Fig. 4.40 to Fig. 4.43 are the x-y projections and Tisserand graphs of the 

solutions in each cluster. Some of the solutions are completely overlapped in both 
representations (clusters 1 and 27, corresponding to Fig. 4.40 and Fig. 4.41). In 
some other clusters, however, although the solutions have very similar parameters 
of merit, they have considerably different trajectories (clusters 22 and 109, 
corresponding to Fig. 4.42 and Fig. 4.43). 

In particular, the case of cluster 109 is relevant: as it is clear from the trajectory 
x-y projection, the orbits of each leg are the same for the two solutions which 
belong to this cluster. Nevertheless, the position of the swing-bys along the orbits 
are different, and this leads to a completely different Tisserand paths. In other 
words, in this case, the Tisserand graph helps highlighting the completely different 
nature of these two solutions, despite their similarity in the x-y projection of the 
trajectory. 

To conclude this part of the study, we can state that rather different solutions 
can exist, despite they have very similar parameters of merit (being , final 
relative velocity  and total time of flight). So in other words the parameters of 

v
v
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merit are not enough to distinguish and classify the solutions of a MGA transfer, but 
other parameters should be considered. 
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Fig. 4.40. Projection of the trajectory and corresponding path in the Tisserand plane 
for the solutions in cluster 1. 
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Fig. 4.41. Projection of the trajectory and corresponding path in the Tisserand plane 
for the solutions in cluster 27. 
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Fig. 4.42. Projection of the trajectory and corresponding path in the Tisserand plane 
for the solutions in cluster 22. 
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Fig. 4.43. Projection of the trajectory and corresponding path in the Tisserand plane 
for the solutions in cluster 109. 

 

45~60 d family 

It has been already stressed how the solutions for the GCGC case could be grouped 
into families according to their total time of flight. However, if only solutions with 
a low final relative velocity (say below 3.5 km/s) are considered (Fig. 4.44), then it 
appears that for each family, there exist a ballistic solution, but for the family 
having the total time of flight between 45 and 60 days. The cheapest solution in this 
family required about 100 m/s of DSMs. The ballistic solutions and the cheapest 
solution in 45~60 day range are circled in red and green respectively in Fig. 4.44. 

It is well known that DSMs can be exploited to change the v  with respect to a 
given body. For this family, instead, it seems that the DSM is the only way to get a 
solution, regardless the value of v  achieved. Now, the question is whether a 
ballistic solution exists in this family, if the constraint on the radius of the pericentre 
is removed. In other words, we would like to understand if it is possible to have a 
ballistic solution, when the swing-bys can provide an arbitrary deflection of the 
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relative velocity vector: in this case, the DSMs would be used to compensate for a 
lack of power in the swing-bys. 

To answer these questions, note first that the radii of pericentre of the cheapest 
solution in the family are 1.38, 2.72 and 1.19 respectively. Since the lower bound 
was set to 1.1, the constraints are not active. This means that the solution remains a 
local minimum even using wider bounds for the radius of pericentre, or in other 
words that this solution would not benefit from a swing-by with a lower minimum 
radius. Other searches with wider constraints on  did not find to any better 

solution. 
pr

We can then conclude that for this family of solutions, DSMs are essential to 
reach the target with a sufficiently low value of v , and this solution cannot be 
represented by a corresponding ballistic one. Further studies highlighted that the 
DSM changed slightly the period of the orbit, and thus allowing the phasing 
problem to be solved. The same change of period was not obtainable through a 
swing-by. 
 

 
Fig. 4.44. GCGC solutions with final relative velocity lower than 3.5 km/s. There is 

no ballistic solution for a total time of flight of 45~60 days. The red circles 
identify the ballistic solutions. The green circle highlights the solution 
which was re-optimised. 
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4.3 BepiColombo Mission 

This section presents the design of the chemical propulsion option for the 
BepiColombo mission [31]. The whole trajectory is made of two conceptually 
different parts: an MGA transfer from the Earth to Mercury and a resonant sequence 
of -GAMs with Mercury to lower the final relative approach velocity to the 
planet. The two parts will be designed separately and the result compared to the 
baseline solution produced by ESA. 

v

4.3.1 Earth to Mercury Transfer Phase 
The problem is to find a suitable MGA trajectory to transfer the spacecraft from the 
sphere of influence of the Earth to Mercury with a launch in the interval [4500, 
5500] MJD2000 (i.e. between April 2012 and January 2015). The sequence of 
swing-bys is free but only Earth, Venus and Mercury can be used. The relative 
velocity at Mercury is constrained to be below 5.8 km/s, and the total  and time 
of the transfer T need to be minimal. The reference frame is the Sun centred inertial 
ecliptic at epoch. 

v

SEQUENCE SELECTION 
The parameters for the generation of the sequence were set as follows: 
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This choice provides a high variety of sequences, such that interesting ones are not 
discarded. 

The list of radii of pericentre of each swing-by, expressed in radii of the planet, 
was set to: 

 .  1.1 1.4 1.6 2 3 4 5p r

The desired escape velocity from the sphere of influence of the Earth is in the 
range [3.5, 4] km/s. The value 4 km/s is used also as pruning criterion. The 
algorithm was run three times, each time considering one of the following values of 
launch excess velocity: 

  0 3.5 3.8 4  km/sv . 

In the same flavour as for the G to C transfer problem, the minimum value of 
the  at Me is the merit function. Resulting sequences, for each considered value 
of the launch excess velocity, are shown in 

v
Table 4.21. The most promising 

sequence seems to be EVVMe: in fact, not only is this sequence feasible for the 
whole range of launch excess velocity, but it also allows a low v  at Mercury, the 
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lowest considering maximum two swing-bys. A third swing-by of Venus (sequence 
EVVVMe) would further reduce the v  with respect to Mercury, however, in this 
section, the analysis will be limited to the EVVMe sequence only. 

 
Table 4.21. Sequences and minimum achievable relative velocity at Mercury for each 

possible launch excess velocity. 
Minimum v  at Me, km/s 

Sequence 
0 m/sv 3.5 k  0 3.8 km/sv   0 4 km/sv   

E V Me   -3 8.31 9.96 
E V Me Me  - 8.31 9.96 
E V V Me  8.25 7.72 8.75 
E V E Me  11.61 13.19 10.15 
E V Me Me Me - 8.31 9.96 
E V Me V Me - 10.93 13.21 
E V V Me Me 8.25 7.72 8.75 
E V V V Me 7.37 7.33 7.46 
E V V E Me 10.18 10.36 9.75 
E V E Me Me 11.61 13.19 10.15 
E V E V Me 8.43 8.77 9.18 
E V E E Me 11.10 9.99 10.42 

INCREMENTAL SOLUTION 
The Earth-Mercury transfer does not include resonant swing-bys of the Earth, 

thus, the E-V leg can be modelled with a simple ballistic arc and the complete 
solution vector for the whole Earth-Mercury reduces to: 

 0 1 1 2 2 2 ,2 3 3, , , , , , , ,p pt T T r T,1,r      x . 

This choice simplifies the partial solution vector at level 1, although the 
number of complete revolutions before the first Venus swing-by becomes a discrete 
parameter of problem [96]. Solutions were computed for both for 0 and 1 complete 
revolutions but, in the following, only the ones with 1 revolution are presented, as 
they are the most interesting. Bounds for this problem are presented in Table 4.22. 

The objective functions for the three levels are: 

 
1v

 

1 0

2 0

3 ,3 ,3 0v v

f v

f v

f g v g v v
  



  



 

  
 (4.6) 

The parameters  and  in Eq. lu

3A
uu

3C

(4.6) are shown in Table 4.23, while  

and  for both  and . 

50r 
0.1s 

                                                      
3 A dash (-) means that the sequence is not energetically feasible for the corresponding 
excess velocity. 
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Table 4.22. Bounds for the EVVMe transfer case. 

Variable LB UB 

0t , d, MJD2000 4500 5500 

1T , d 300 500 

2T , d 180 720 

3T , d 180 720 

,p ir , PR  1.1 3 

i  0.01 0.9 

1 , rad 2  2  

2 , rad 2  2  

 
Table 4.23. Parameters a and b for the objective function f3. 

 ,3vg v
    ,3 0vg v v    

lu , km/s uu , km/s lu , km/s uu , km/s 

–∞ 6 –∞ 4 
 
The solutions at level 1 were considered to be feasible if 0  

(consistently with the results in 
4 km/sv 

Table 4.21) while at level 2, solutions were 
considered to be feasible if 0 4 km/sv   and 1 50 m/sv  . An additional pruning 

criterion was added at level 2 on the period of the final orbit, 2 200 dP  , in order to 
discard all the solutions which were not reducing the period. In formulae: 

  (4.7) 
 
    

1 0

2 0 1 2

4 km/s

4 km/s 50 m/s 200 d

v

v v P

  

        
The local optimisation was stopped when a solution with  was 

found for level 1, and with 
0 4 km/sv 

0 14 km/s, 50 m/sv v    for level 2. 
Fig. 4.45 (a) and (b) represent the feasible solutions and feasible regions for 

level 1, after pruning level 1 and 2 respectively. Fig. 4.45 (b) shows that the back 
pruning removed some of the regions at level 1 when level 2 was pruned. The 
number of function evaluations required to obtain these results, level by level, and 
the corresponding computational time, are reported in Table 4.24. 

If, at the end of optimisation of level 3, only solutions having  (tight 

fulfilment of the requirements on 
3 0.3f 

v  and v ) are selected, then only 4 options 
remain, which are very similar one another. One of them is presented in Fig. 4.46, 
and a summary of its main characteristics can be found in Table 4.25. 
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 (a) After pruning level 1 (b) After pruning level 2 

Fig. 4.45. Feasible solutions and feasible regions for variables t0, T1 after pruning 
level 1 (a) and level 2 (b). 

 
Table 4.24. Number of function evaluation and computational time for each level of 

the EVVMe transfer problem. 

Level 
No. objective function 

evaluations 
Time 
Intel 

Time 
Sun 

1 90,291 198 s 493 s 
2 1,418,682 67 min 164 min
3 459,798 26 min 66 min 
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Fig. 4.46. Projection on the x-y plane of an EVVMe solution. 

 

 



164 APPLICATION TO REAL CASE STUDIES 4. 
 

Table 4.25. Characteristics the EVVMe solution in Fig. 4.46. 
Parameter Value 

Departure date  0t
4972.9 MJD2000 

(13 Aug 2013) 
Launch excess velocity , km/s 0v 3.89 

1T , d 435 

2T , d 673 

1v , m/s 84 

3T , d 639 

2v , m/s 12 
Total time of flight, d 1747 
Total , m/s v 96 
v  at Mercury, km/s 5.91 

4.3.2 Resonant Swing-bys of Mercury 
This test case is similar to the GGA2-GGA5 transfer case of the Laplace mission 
(Section 4.2.1). Resonant swing-bys of Mercury are used to reduce the velocity with 
respect to Mercury. The incoming conditions at Mercury, prior to the resonant 
sequence, are frozen, for sake of comparison with the ESA reference solution. 
Epoch and velocity used for this case are in Table 4.26. The orbit of the spacecraft 
before the first swing-by, and the orbit of Mercury are represented in Fig. 4.47. The 
reference frame is Sun centred inertial ecliptic at epoch. 

The initial relative velocity with respect to Mercury ( v ) is 5.84 km/s in 
magnitude and has to be brought down to at least 2.3 km/s. No requirements on 
final inclination or period are explicitly imposed. The total v  and transfer time 
need to be minimal. 

INCREMENTAL SOLUTION 
The problem is tackled incrementally in an analogous way as it was explained in 
Section 4.2.1. Three swing-bys of Mercury are used, and the corresponding 
incremental problem has three levels. The solution vector has the form: 

 . 1 ,1 1 1 2 ,2 2 2 3 ,3 3 3, , , , , , , , , , ,p p pr T r T r T        x

Bounds for this problem are given in Table 4.27. 
 

Table 4.26. Initial epoch and velocity relative to Mercury. 

0t  6717, d, MJD2000 
(23 May 2018) 

,r hv , km/s [-2.399, 5.229, -1.002] km/s 
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Fig. 4.47. Initial orbit of the spacecraft (before the first Me swing-by), in blue, and 

the orbit of Mercury (in red). 
 

Table 4.27. Bounds for the MeMeMeMe transfer case. 

Variable LB UB 

1T , d 45.1 ( 0.5 MeP ) 742.5 (8 20MeP d ) 

2T , d 90.3 ( MeP ) 561.9 ( 6 20 dMeP  ) 

3T , d 90.3 ( MeP ) 541.9 ( 6 MeP ) 

,p ir , PR  1.0893 ( 200 kmph  ) 3 

i  0.01 0.9 

i , rad 2  3 2  

 
Objective functions were chosen as following: 

 

   

1 1

2 1 2

3 ,3 ,3v v

f v

f v v

f g v g v
  

 
   

  

 (4.8) 

Parameters  and  for lu uu ,3vg


 and ,3vg

20

 were set as indicated in Table 4.28, 

and the other parameters were set to r   and 0.1s   for both functions. 
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Table 4.28. Parameters a and b for the objective function f3. 

 ,3vg v
    ,3vg v   

lu , km/s uu , km/s lu , km/s uu , km/s 

–∞ 2.4 –∞ 0.6 
 

Table 4.29. Number of function evaluation and computational time for each level of 
the MeMeMeMe transfer problem. 

Level 
No. objective function 

evaluations 
Time 
Intel 

Time 
Sun 

1 261,422 351 s 933 s 
2 655,748 23 min 59 min 
3 1,888,860 89 min 231 min 

 

0.4 0.5 0.6 0.7
1.9

2

2.1

2.2

2.3

2.4

2.5

T otal v DSM, km/s

F
in

al
 v


, 
km

/s

106010801100112011401160
1.9

2

2.1

2.2

2.3

2.4

2.5

T otal T , d

F
in

al
 v


, 
km

/s
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Fig. 4.48. Solutions to the MeMeMeMe transfer problem. 
 
The following pruning criteria were adopted for each level. For level 1, 

solutions were considered feasible if 1 300 m/sv   and 5.83 m/sv  . For level 2, 

solutions were feasible if  and 1 2v v , 300 m/s 5.6 m/sv  . These pruning 
criteria translate into: 

 
   
  

1 1

2 1 2

300 m/s 5.83 m/s

, 300 m/s 5.6 m/s

v v

v v v





     

       
 (4.9) 

In addition, each local optimisation in the Multi-Start was stopped when a 
solution satisfied the condition 1 300 m/sv   at level 1, and the condition 

 at level 2. 1 2, 300 mv v   /s
The number of function evaluations required to obtain these solutions, level by 

level, and the corresponding computational time, are reported in Table 4.29. As a 
result of the optimisation of level 3, a total of four solutions were found, whose 
value of 3f  is less than 0.5. The total v , time of flight and final v  at Mercury of 
these solutions are represented in Fig. 4.48. 
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It has to be noted that solutions in Fig. 4.48, found with the incremental 
approach, do not minimise the v , nor the final v , but a combination of the two 

according to the objective function 3f  in Eq. (4.8). This means that potentially these 

solutions could be improved by minimising the total v , and constraining the  to 

a given value. Thus, for each solution, an optimisation was run constraining  to 
2.3, 2.2, 2.1, 1.9, 1.8 km/s and minimising the total 

v
v

v . The re-optimised solutions 
having  are shown in 500 m/sv  Fig. 4.49, in of the  total v  - v  plane. The 
colour scale is proportional to the total time of flight of the solution. In the figure, 
three long transfer solutions (around 1160 days), and one short transfer solution 
(about 1080 days) are discernible. 



A projection on the x-y plane of the trajectory of the short solution (blue circle 
in Fig. 4.49) is shown in Fig. 4.50, and its main characteristics are reported in Table 
4.30. The figure shows also the magnitude and the position of each DSM. The 
resonances spacecraft: Mercury of this solution are 2:3, 3:4, 4:5 for each leg 
respectively. The same kind of information is provided for the long solution circled 
in red in Fig. 4.49. The x-y projection of the trajectory is presented in Fig. 4.51, its 
characteristics can be found in Table 4.31. For this solution, the resonances are 2:3, 
3:4, 5:6. 

 

 
Fig. 4.49. Re-optimised solutions of the MeMeMeMe transfer problem. 
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Fig. 4.50. Projection on the x-y plane of the re-optimised short solution, circled in 

blue in Fig. 4.49. Characteristics of this solution are presented in Table 
4.30. 
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Fig. 4.51. Projection on the x-y plane of a re-optimised long solution, circled in red in 

Fig. 4.49. Characteristics of this solution are presented in Table 4.31. 
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Table 4.30. Characteristics of a re-optimised long MeMeMeMe solution, circled in 
blue in Fig. 4.49. 

1T , d 265.8 

2T , d 357.3 

3T , d 447 

Total time of flight, d 1070 
Total , m/s v 209 
v  at Me, km/s 2.2 

 
Table 4.31. Characteristics of the re-optimised short MeMeMeMe solution, circled in 

red in Fig. 4.49. 

1T , d 265.3 

2T , d 359.5 

3T , d 537.7 
Total time of flight, d 1162 
Total , m/s v 225 
v  at Me, km/s 1.77 

4.4 Summary 

This chapter presented a set of four case studies. The design problems (initial 
conditions, target conditions) were taken from two missions that, at the time of the 
work, were under study at ESA: Laplace and BepiColombo. For both missions, two 
different segments were considered: a resonant swing-by phase, to reduce the 
relative velocity at the planet, and an interplanetary phase, to reach a planet with 
given final conditions. Differently from the test cases presented in the previous 
Chapter 3, the aim of this chapter was to demonstrate how the incremental pruning 
combined with the sequence generation can be helpful to tackle real mission design 
problems. Specific partial objective functions were developed, to progressively 
change the orbital parameters, level after level, in order to meet the objectives of the 
problem, at the end of the transfer. 

In all the cases, the incremental approach was able to replicate the baseline 
solution found at ESA. In addition, it was able to identify a number of additional 
solutions, that could serve as possible alternatives or back-ups during the mission 
preliminary study. 

In this chapter, the sequence generation process was also tested, and its ability 
to find a set of promising sequences was shown. For the Laplace interplanetary 
transfer case, a number of different sequences was also investigated with the 
incremental pruning algorithm, and an extensive analysis of the solutions was done, 
including a comparison with the Tisserand plane: it resulted that some solutions 
cannot be identified using this preliminary graphic technique. 
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Computational times were reported, to show that the incremental approach ran 
in at most a few hours on a common personal computer, hence avoiding the need of 
high-performance machines to obtain results quickly. 

 



 

5  
 
 
ACO-MGA 

The chapter is organized as follows: the MGA planning problem will be briefly 
introduced, then the modified ACO algorithm (named ACO-MGA) will be 
described in detail with an analysis of its complexity; a discussion will follow 
comparing the proposed planning algorithm against standard ACO. Finally, two 
case studies will demonstrate the effectiveness of the proposed approach against 
Genetic Algorithms, Non-dominated Sorting Genetic Algorithm 2 and Particle 
Swarm Optimization. 

5.1 Trajectory Model 

The trajectory model is an integral part of the proposed integrated approach, subject 
of this chapter. The model is based on a two dimensional linked conic 
approximation of the trajectory: the trajectory is composed of a sequence of planar 
conic arcs linked together through discrete, instantaneous events. In particular, the 
sequence is continuous in position and piecewise continuous in velocity, i.e. each 
event introduces a discontinuity in the velocity of the spacecraft but not in its 
position. The discrete events can be: launch, deep space manoeuvre, swing-by, and 
brake. 

Assuming that the trajectory is planar may seem very reductive, but in the solar 
system the inclination of the planet orbits on the ecliptic is very small (below 3 
deg), with the exception of Mercury and Pluto (see Table 5.1). Although Pluto 
cannot be used for a swing-by, being the farthest of the bodies in the solar system, 
Mercury is definitely an appealing target, both for swing-bys and as a scientific 
destination. This is demonstrated by the NASA flying MESSENGER mission and 
the ESA BepiColombo mission, currently under study. A test case will show that 
this assumption is acceptable, and will lead to have good solutions even for a 
transfer to Mercury. Relative inclination of orbits of the bodies is low even in other 
systems of moons, like the four Galilean moons of Jupiter. 

171 
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However, the transformation of the three dimensional motion of the planets 
into the planar model requires some attention. A possibility is to start from the real 
three-dimensional ephemerides given in Keplerian parameters, and then set to zero 
the inclination, without changing the other 5 orbital elements; another choice is to 
take the projection on the x-y plane of the real orbit. It is important to remark that 
the first option preserves the shape of the orbit in its plane (i.e., the semi-major axis 
and the eccentricity). This means that the period and the mean motion of the real 
orbit are the same as the 2D orbit’s ones. This is particularly important for the 
implementation of this model, because it allows to read the ephemerides only once, 
and then propagate the orbital parameters analytically, gaining in execution speed. 
For this reason, it is chosen to set the inclination of the planets to zero, rather than 
taking the x-y projection. 

The fact that the trajectory is two dimensional will be exploited in several 
ways, as it will be shown in the following. The major limitation of this model is that 
it cannot be used for missions which have the necessity to go out of the ecliptic 
plane [63], such as the ESA-NASA mission Ulysses, for example. 

A final assumption of the present implementation is that all the orbits of both 
spacecraft and celestial bodies are direct, thus no retrograde orbits are allowed. 

In summary, the proposed trajectory model is composed of: a launch from the 
departure celestial body; a series of deep space flight legs connected through 
gravity assist manoeuvres (modelled through a linked-conic approximation); a 
capture into an orbit at a target celestial body. Each one of these basic components 
will be explained in this chapter. 

 
Table 5.1. Orbital inclination of the planets in the solar system on the ecliptic. 

Planet Inclination, deg
Mercury 7.0047
Venus 3.3946
Earth 0
Mars 1.8497
Jupiter 1.303
Saturn 2.4886
Uranus 0.77313
Neptune 1.7697
Pluto 17.151

5.1.1 Launch 
The launch event is modelled as an instantaneous change of the velocity of the 
spacecraft with respect to the departure planet. The velocity change is given in 
terms of modulus  (which depends on the capabilities of the launcher) and in-

plane direction, specified through the angle 
0v

0 , measured counter clockwise with 

respect to the planet’s orbital velocity vector  at time of launch . Pv 0t
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According to Fig. 5.1, the initial relative velocity of the spacecraft, with respect 
to a reference frame centred in the planet and having the axes tangential and normal 

( ˆ ) to its orbit, is ˆ,t n

 0
0, 0

0

cos

sintn v



 
  

 
v . 

The vector is then transformed into the heliocentric Cartesian reference frame, 
getting 0,xyv , and added to the velocity of the planet  to give the departure 

velocity: 
Pv

 1 0,xy P v v v . 

The departure time and the direction 0  are free parameters of the model, while 

launch velocity modulus 0  will be used to target the next planetary encounter and 
solve the phasing problem, as explained in the following. 

v

 

 
Fig. 5.1. Geometry of the launch, and convention for launch angle. 

Pv

0v
0 0 

t̂

n̂

5.1.2 Swing-by 
The swing-bys are unpowered, and as in the velocity formulation, they are modelled 
as instantaneous changes of the velocity vector of the spacecraft due solely to the 
gravity field of the planet. The reader can refer to Section 2.2.2 for a detailed 
explanation. However, in this trajectory model, the swing-by is planar and hence 
there is no need to define the attitude of the hyperbola plane, but only the direction 
of the deflection. 

Given the velocity vector v  before the swing-by and radius of pericentre, the 
anomaly of the asymptote   can be computed with Eq. (2.6), and then the 
deflection angle of the asymptotic relative velocity vector, due to the planet gravity 
field, is: 

  2 b     

where  is a binary variable defining the direction of the deflection, i.e. 
clockwise or counter-clock wise. In fact, in the linked conic approximation the 
actual planetocentric hyperbola followed by the spacecraft is not defined, thus both 

1b  
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2    and 2   are acceptable deflection angles. In order to avoid 
introducing an additional parameter in the practical implementation on this model, 
we will make use of a signed radius of pericentre  that can assume negative 

values, such that: 
psr

 
 sgn

p ps

ps

r r

b r




 

The outgoing relative velocity is found by rotating the incoming velocity by  : 

 
cos sin

sin cos

 
 

 
 

 
   

v v  

And finally the absolute velocity is: 

 P
 

 v v v  

As for the launch velocity magnitude, the radius of pericentre  is tuned to 

meet the terminal conditions of the transfer leg following the swing-by. 
psr

5.1.3 Deep Space Flight Leg 
Each deep space flight leg is made of two conic arcs linked, at a point M, through a 
single discrete event. The leg starts at a departure planet  and ends at an arrival 

planet . 
iP

1i

The event can be a deep space manoeuvre. A DSM is an instantaneous change 
in the heliocentric velocity vector of the spacecraft, obtained by firing an engine. In 
this model, we assume that the DSM is performed either at the apocentre or at the 
pericentre of the conic arc preceding the manoeuvre. In addition, the change in 
velocity is tangential to that arc. As a consequence, the DSM will raise or decrease 
either the pericentre or the apocentre of the orbit, without changing the line of 
apsides.  

P

In this model, two different types of deep space flight legs exist, depending on 
whether the  DSM occurs or not. If there is a DSM, then the first arc is propagated 
from planet i  to point M for a given number of revolutions. Then, the DSM is 
applied, and the second arc is propagated for a number of full revolutions, until one 
of the intersections with the orbit of planet 1i

P

P . On the other hand, if there no DSM 
exists, the first arc is still propagated till a point M, from which, without applying 
any manoeuvre, the second arc starts. 

FIRST ARC 

Let us assume that the spacecraft is at a given planet 1  at time 1 . Its position 1  

coincides with that of the planet P , which is known from the 2D ephemeris. The 

heliocentric velocity of the spacecraft , instead, depends on the preceding launch 

P t x

x

1v
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or swing-by event. The initial state  1 1,x v  is converted into the 6 Keplerian 

elements  with inclination 1K 0i  , and right ascension of the ascending node is 

arbitrarily set to , since the problem is two dimensional, and retrograde orbits 
are not allowed. 

0 

In the case when a DSM is required (Fig. 5.2), the first step is to find the 
position and time of the DSM. The position can either be the pericentre or the 
apocentre, according to a binary variable /p af . The true anomaly of the DSM is 

straightforward: 

0 M re 0

1 M tre
DSM

DSM

DS

DS

 at pericent

 at apocen  
 

  


/p af  

 

 
Fig. 5.2. A representation of the first arc, from the planet up to point M, where the 

DSM occurs. Possibly multiple revolutions (dashed trajectory) can be 
performed. 

 
The Keplerian parameters at the point of the DSM, and before performing the 

manoeuvre are given by 

  1 1:5 , DSMDSM
    K K . 

The Cartesian position  of the DSM and the Cartesian velocity before 

performing the manoeuvre DSM  is computed by converting DSM . The time of the 
DSM is found by first computing the eccentric anomaly corresponding to the 
departure point 

DSMx
v K

1 : 

 1
1 2ar

1
tan

e

e
c tan

1 2
E




 . (5.1) 

Then, by using the time law: 

    
3

1
,1revt n 1 1 1 12 sin

a
E E e E t


    DSM DSM  

Tangential DSM Δv 
(at apocentre or 

pericentre) 

Swing-by 
or 

departure 

,1revn  complete 

revolutions before 
DSM 

1P  
M
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where 2DSM DSME k   , since the manoeuvre is either at pericentre or apocentre, 

and the integer k must be chosen such that DSME ollowing 1 is f E . The quantity ,1revn  

e number of full revolutions before the DSM. is th
Once t  is determined, the DSM is applied and the velocity after performing 

the DSM is given by: 
DSM

 DSM
DSM DSM DSM

DSM

m
v


 

 
v

v v  

where  is the magnitude and direction of the DSM: if  is positive, the 
thrust is along the velocity of the spacecraft, otherwise it is against the velocity of 
the spacecraft. Then, the complete state of the spacecraft, after the DSM and at the 
beginning of the second arc is defined as: 

DSMm DSMm

 

M DSM

M DSM

M DSM

t t










x x

v v

 

If no DSM has to be performed, i.e. m 0DSM  , the aim of the first arc is only to 

move the spacecraft away from planet  (see 1P Fig. 5.3). To understand the reason 

for this, let us assume that the leg under consideration is resonant, that is , 
and since there is no DSM, we propagate directly the arc, up to the intersection with 
the orbit of . If no full revolutions are considered, then the first intersection is at 

, after a null time. 

1 2P P

2P

1P
 

1P

 
Fig. 5.3. The first arc, up to point M, if there is no DSM, is just an increase in the 

true anomaly, to move away from planet P1. 
 
To prevent this from happening, the conditions  1 1,x v  at are propagated 

forward, for a short amount of time. The state of the spacecraft at point M, 
1P

,M Mx v , 
is found starting from the Keplerian parameters: 

  1 0,0,0,0,0,M   K K  

Swing-by 
or 

departure 


M
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and then converting into Cartesian coordinates. The quantity   is a small angular 
displacement, larger than the machine numerical precision. For this work, 

 was chosen. The time at M is found by solving the time law 0.3 rad 

      
3

1
1 1 1sin sin 2M M M

a
t E E e E E k


     1t  

where 1E  and ME  are computed with Eq. (5.1), by using 1  and 1M      

respectively. Again, as in the previous case, 2M ME E k  , with k such that ME  

follows 1E . 
 

SECOND ARC 

The second arc connects the spacecraft at point M and state  ,M Mx v  with the 

proper intersection of the orbit of planet  (see 2P Fig. 5.4). 

Given the orbital parameters of the spacecraft MK  at time Mt , and the orbital 

parameters of planet , the task is to find the intersection between the two orbits. 
Two ellipses in the same plane (and here comes the assumption of planar problem) 
have either two (at most coincident) intersections, or no intersections. With 
reference to 

2P

Fig. 5.5, given the polar equations of the two ellipses: 
 

 
Fig. 5.4. Second arc. From point M (which is either after the DSM or after the first 

arc) to the selected orbital intersection with the planet. If nrev,2 > 0, then the 
full revolutions are performed (dashed trajectory) before the orbital 
intersection. 
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Intersection (1) 

 
Fig. 5.5. Geometry of intersections of two coplanar ellipses (with the same focus). 
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 (5.2) 

The subscripts 1 and 2 refer to the two ellipses. Let us decide that ellipse 1 is 
the spacecraft orbit and ellipse 2 is ’s orbit. The intersections can be found by 
setting the radii and the true longitudes equal each other: 

2P

  (5.3) 
  

1 2

1 1 1 2 2 2

r r

   


      

Defining    1 1 2 2       and combining Eqs. (5.2) and (5.3), after 

some algebra we get: 

      1 2 2 1 1 1 2 1 1 2cos cos sin sin 0
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p e p e p e p p        
C



1

 (5.4) 

that is a linear equation in 1sin , cos  , in which we also defined the coefficients A, 

B and C. By using the transformation 1tan
2

  , Eq. (5.4) becomes, after some 

algebra: 

    2 2 0C B A B C       

which has solutions: 
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The equation gives the true anomaly on ellipse 1 of the two intersections. The 
superscripts (1) and (2) refer to the two intersections. Since we are only interested 
in the two intersection points, we can neglect the periodicity of the solutions, by 
setting . The true anomaly on the second orbit can be computed considering 
the second equation in system 

0k 
(5.3): 

    1,2 1,2
2 1     

If , then there are no real solutions, which means that the 
spacecraft orbit does not intersect ’s orbit, and the initial conditions of the leg, or 
its parameters, have to be changed. 

2 2 2 0A B C    

2P

If instead there exist two intersections, one of them is selected according to the 
binary variable 1/2f , which is another parameter for the leg. 
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   int int
1 2,   are the true anomalies on the two ellipses of the selected 

intersection. Now, it is possible to compute the time  of the intersection, 

provided that the spacecraft was at true anomaly 
intt

M  at time Mt , by solving once 

again the time law, after having computed intE  from  int
1  using Eq. (5.1): 

   
3

1
,22 sin sinint rev int M int M M M M

a
t n E e E E e E


t      . 

The integer variable  describes the number of full revolutions between the 

point M (possibly a DSM) and the orbital intersection (
,2revn

Fig. 5.4). 
Finally, the Keplerian parameters at the intersection point are 

    
11:5 , int

int M    K K  

from which the Cartesian state  ,int intx v  can be computed. 

5.1.4 Solution of the Phasing Problem 

The fact that the spacecraft at time  intersects the orbit of planet  does not 
imply that the planet is at the intersection point at that time, which is a requirement 
to perform a gravity assist manoeuvre or a planetary capture. 

intt 2P

Therefore, for each leg, a one parameter search is started to match the terminal 
position of the spacecraft with that of the planet.  

Depending on the event at the beginning of the leg – swing-by or launch – the 
following parameter   is chosen: 
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0

,     if swing-by

,          if launch
psr

v



 


Hence, the true anomaly of the intersection point on the planet’s orbit   


, 

and the true anomaly of the planet position     at the time of intersection  (see intt

Fig. 5.6) become a function of  . The former coincides with  int
2  computed in the 

previous section, while the latter is provided by the ephemeris of the planet. 
The phasing problem, then, is to find one (or more) values for the parameter   

such that the planet is at the intersection point at the time of the intersection: 

      
*

* * *

find:               =

such that:       0

 

        
  (5.5) 

Since the true anomaly is a cyclical variable (i.e. 2k     for this purpose), 

care must be taken to choose the proper integer k for both   and 


, in order to 
have a value of   which allows solving the phasing problem. The procedure for 
computing   is presented in Algorithm 5.1. It is worth noting that the algorithm 
provides correct values of   even if the intersection point and the planet position 
are close to the pericentre of the orbit, but on different sides with respect to the line 
of apsides. 

Problem (5.5) is that of finding the zero of a non-linear function. Fig. 5.7 and 
Fig. 5.8 represent the function     for different transfer cases. Fig. 5.7 (a) and 

(b) are non-resonant transfers: the former is from Venus to Mercury, following a 
swing-by of Venus. In this case, the parameter   is the radius of pericentre of the 
swing-by . The latter is Earth to Venus after launching from Earth, so psr 0v  . 

Fig. 5.8 (a) and (b), instead, refer to resonant transfers: the former is a Venus to 
Venus transfer starting with a swing-by; the latter is an Earth to Earth transfer, 
starting with launch. 

 

 
Fig. 5.6. The phasing problem consists of finding λ such that the target planet P2 is 

at the orbital intersection point at the correct time. This is done by finding 
the zero of the difference in true anomalies Δθ. 
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Algorithm 5.1. This pseudo-code illustrates the procedure for finding a meaningful 
value for Δθ regardless the cyclic nature of the two input variables. 

Function   ComputeDeltaTheta  , 


 

 1:  mod ,2    

 2:  mod ,2  
 

 

 3: 
2
2

arg min
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 
 

  
   

  

 


 

 4:     

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 (a) Venus to Mercury (b) Earth to Venus 

Fig. 5.7. Δθ(λ) for: (a) Venus to Mercury leg following a swing-by of Venus, from 
BepiColombo; (b) Earth to Venus leg following launch from Earth, from 
Cassini. 
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 (a) Venus to Venus (b) Earth to Earth 

Fig. 5.8. Δθ(λ) for: (a) Venus to Venus leg following a swing-by of Venus, from 
BepiColombo; (b) Earth to Earth leg following launch from Earth, from 
Cassini. 
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It is worth noting that for some values of  ,     is not defined: this is the 

case when there is no possible orbit intersection. Examples are in Fig. 5.7 (a), for 
2.1ps pr R  , or Fig. 5.7 (b), for 0 2.6 km/sv  . This is in fact the minimum excess 

velocity to reach the orbit of Venus from Earth (with 0  , as it was used in this 
case). 

In the case of a leg following a swing-by,  is also limited by the radius of the 

planet. This constraint translates into the condition 
psr

 1ps ps

P P

r r

R R

  
1


     
  




. (5.6) 

Condition (5.6) introduces the gaps in Fig. 5.7 (a) and Fig. 5.8 (a) (swing-by 
cases). In the cases depicted in Fig. 5.7, the function     is continuous, smooth 

and monotonic over the range of interest of  . Hence, the phasing problem has 
only one solution. This solution can be found with a simple Newton-Raphson 
method in one dimension. 

However, when a resonant transfer is considered, as in Fig. 5.8,     is 

discontinuous and multiple zeros exist. Each zero corresponds to a different 
resonance with the planet (and of course a different transfer time). The discontinuity 
is due to the cyclic nature of  : in fact, say d  is the value of   at which   is 

discontinuous,  then lim
d 

 
  , and 

d
lim

 
 

   , i.e. the planet and the 

spacecraft are on the opposite sides of the planet’s orbit. 
The fact that none, one or more solutions to the phasing problem (for each leg) 

may exist implies that a dense enough set of starting points has to be provided (both 
for the case psr   and 0v  ), and the zero-finder algorithm shall be run from 

each one of the starting points, to make sure that all the zeros are found; the zero 
finder shall not converge on the discontinuity (or at least discard the result if that 
happens), which would be the behaviour, for example, of the bisection method if 
the two starting points are chosen across the discontinuity; different solutions lead 
to different final conditions, and so they affect the subsequent part of the trajectory. 

Since there is no easy way, at a given leg, to prefer one value of *  rather than 
another, having multiple solutions means that all of them shall be considered for the 
subsequent legs. 

The search for the zeros of both  0v  and  psr  is performed by means 

of a Brent method [119]. This method resulted to be fast and robust, since it uses a 
Newton based method for quick convergence, but it is able to switch to a bisection-
like method when needed. A set of starting points needs to be provided as a 
parameter to initialise the Brent method. 
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Selected intersection 
point with planetary 

orbit 

 
Fig. 5.9. Representation of a complete leg, with a DSM and possibly multiple 

revolutions. The phasing problem with P2 is not solved. 
 
Figure 5.9 illustrates a complete leg, including a DSM: starting from planet  

with either a swing-by or launch, the first arc is propagated for a number of full 
revolutions until the point M (the apocentre of the orbit in the picture). The DSM 
raises the pericentre and the second arc, after some full revolutions, intersects the 
orbit of planet . The figure also shows that the phasing problem is not solved, as 

 at the time of intersection is not at the intersection point. 

1P

2P

2P

5.1.5 Complete Trajectory 
The trajectory model requires the ephemerides of the planets, the gravitational 
constant and the radius of the main attracting bodies. 

The sequence of planetary encounters is characterised by the vector of integer 

values . The interplanetary transfer starts with a launch at , 

followed by a interplanetary leg from  to . Then a number of swing-bys and 

interplanetary legs follow, starting from  until the target planet  is reached. It 

follows that a sequence with  planets has 

1 2, ,
PnP P P   1P

1P

P
2P

legs

2 pnP

Pn 1Pn n   legs, and  swing-

bys. 

1gs len

The departure time  and departure angle 0t 0  are free design variables, 

together with five variables for each leg: 1 real ( ), 2 integers ( ), and 

2 binaries (
DSm M ,1 ,2,rev revn n

/ 1/2,p af f ). Since these five variables fully characterise the interplanetary 

leg, each set of values of these variable represents one type of transfer. In Table 5.2, 
the design variables for the entire trajectory are listed. The set of these variables 
define a solution to the transfer problem. 

Planetary orbits 

Transfer trajectory 

Swing-by 
or 

departure 

Destination planet 
at time of orbit 

intersection 

Δθ nrev,1 complete 
revolutions 
before DSM

Other intersection 
point with planetary 

orbit

2P

1P Tangential DSM Δv 
(at apocentre or 

pericentre) 
M

nrev,2 complete revolutions 
before interception 
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Table 5.2. Description of the free design variables defining a solution according to the 
proposed 2D model. 

Description Variables 
Planetary sequence, with  planets and 

pnP 1legsn   

swing-bys 
1 2, ,

PnP P P    

Departure time 0t  

Departure angle 0  
Set of 5 of variables to characterise each leg 

: 1 real, 2 integers, 2 binaries 1, , legsi n  ,1 ,2 / 1/2, , , ,DSM rev rev p a i
m n n f f    

 
Algorithm 5.2. This pseudo-code generates a list L containing the arrival conditions 

for all the feasible trajectories of the transfer problem. 

 1: : find all possible 1P P 2  * *
0 0 0v v   

 2: For each  find the final conditions of the leg *
0v

 3:  Add all the possible final conditions to list  L
 4: End For 
 5: For each leg  2,..., legi n

 6:   tempL 

 7:  For each element in list L 

 8:   : find all possible 1i iP P  * * 0ps psr r   

 9:   For each  psr

 10:    Find the final conditions at planet 1iP  and add to list  tempL

 11:   End For 
 12:  End For 
 13:  If , Then All trajectories infeasible at leg i, Terminate tempL 

 14:   tempL L

 15: End For 
 
In addition to the design variables, two vectors containing the starting guess 

values for  and  need to be provided. 0v pr

It was pointed out that at launch or at each swing-by, multiple zeros may arise 
in the phasing problem. Each zero generates a different trajectory for the leg, thus 
creating a tree-like structure for the whole transfer problem, in which every branch 
is a different trajectory. Algorithm 5.2 illustrates the procedure to keep track of the 
tree of possible trajectories, as long as legs are added to the solution. At the end of 
the algorithm, the list  contains all the possible conditions of arrival at the last 
planet in the sequence. 

L

Since the time of flight is not explicitly bounded within this model, an upper 
bound of the time of flight for the entire trajectory or for some legs is introduced: 
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all the solutions that exceed the total or partial time of flight constraint are 
discarded from the list. 

Note the termination condition at line 13: if at a given leg i, there are no 
solutions which satisfy the phasing problem, then the trajectory is unfeasible at leg 
i, and the algorithm terminates. The information of unfeasibility at a given leg will 
be used to fill in a taboo list of broken and impracticable solutions. 

For each of the trajectories found, the model computes: 
 The sum of all the DSMs, or total v  and the launch excess velocity, 0v , 

which is the result of the phasing problem for the first leg; 
 The relative velocity at the last planet, v . This value is usually important 

for assessing the optimality of a trajectory, as a low v  implies that a small 
manoeuvre is needed for the spacecraft to be captured by the target planet; 

 The total time of flight of the trajectory. The total time of flight is important 
when assessing the trajectory, as long missions may not be feasible due to 
excessive cost of the operations. 

The whole model was implemented in ANSI C and compiled as a MEX-file for 
interfacing with MATLAB®. 

5.2 The ACO-MGA Algorithm 

The construction of an optimal MGA trajectory is translated into an optimal 
planning problem with finite state space. An optimisation procedure, based on the 
ant colony optimisation paradigm, was developed to explore the space of possible 
plans. A plan is fully defined by assigning a value to the parameters in Table 5.2 for 
all the possible legs connecting the departure body to the target one. A complete 
plan will be called a solution of the optimal planning problem in the following. A 
partial or incomplete plan is the set of parameters sufficient to describe a solution 
up to a given leg, and will be referred to as partial solution. A plan does not define a 
single scheduled sequence of events, as the scheduling of the events is solved 
internally in the model by solving the phasing problem presented in the previous 
sections. Therefore, each plan, or solution, corresponds to a number of scheduled 
sequences of events or trajectories. Each trajectory is characterised by a different 
combination of  and  for each leg.  0v

pr

The optimisation algorithm, called ACO-MGA in the following, operates a 
search in the finite space of possible values for the design variables in Table 5.2, 
including the planetary sequence s, for a fixed number of legs. A complete 
description of the algorithm ACO-MGA, that was implemented in MATLAB®, 
follows. 

5.2.1 Solution Coding 
In ACO-MGA, a solution is coded through a string of discrete values assigned to 
the parameters in Table 5.2. However, the set of parameters is inhomogeneous, as it 
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is made of real, integer and binary variables. In particular, , 0t 0  and DSM i
m  are 

real continuous variables and need to be properly discretised. In the present 
implementation of ACO-MGA, the values of the departure date 0t  and the departure 

angle 0 , are assu ed to be pre-assigned and therefore the two parameters are 
removed from the list of the variables. The rationale behind this choice is that, 
although the launch date has a great impact on the resulting trajectory, if an 
algorithm exists that is able to efficiently generate a complete plan for a given 
launch date, a systematic search can be performed along the launch window, with a 
given time step. 

m

The angle 0  on the other hand can very often be estimated depending on the 
mission: usually a tangential launch is used for non-resonant legs, in order to 
maximise the change in semimajor axis. The launch will be in the same direction of 
the planet heliocentric velocity ( 0 0  ) if the second planet in the sequence is 

outwards; vice versa, the launch will be in the opposite direction ( 0  ) if the 

second planet is inwards [74]. For resonant legs, instead, very often 0 2    is 
chosen, as this value allows maximising the radial component of the relative 
velocity vector, at the following swing-by [102]. Furthermore, it is assumed that the 
departure planet  is pre-assigned, as it is in the great majority of the applications. 1P

Using the additional assumptions on , 0t 0  and , each solution can be coded 

using a vector x of positive integers. The vector has  entries. Each pair of 

consecutive entries encodes all the parameters necessary to characterise one leg of 
the solution (

1P

 2 1i

2 legsn

1

Fig. 5.10). The first element of the pair is encoding the identification 
number of the target planet for the corresponding leg according to the following 
procedure: an ordered list  containing all the planets available as a target for 

each leg i is predefined (and fixed); then, said k x
,P iq

  , the target planet is the nth 

entry in the list q , i.e.  . ,P i , ,P i kq

 
Leg 3 Leg 1 Leg 2 

Types of transfer 

Planets 

Solution vector x

 
Fig. 5.10. Vector for coding a three-leg solution. 

 
The second element of the pair is the row index of a matrix containing all 

possible combinations of values of the five discrete variables 
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, ,1, ,2, / , 1/2, , , ,DSM i rev i rev i p a i im n n f f ,

,q

 and thus it defines the type of transfer. For each leg, 

let us assume that the value of each of the five parameters belongs to finite pre-
defined ordered sets: 

  (5.7) , 1, ,1, 2, ,2, 3, / , 4, 1/2, 5; ; ; ;DSM i i rev i i rev i i p a i i i im n n f f    q q q q

and define the vector  whose components are the cardinalities of each of the 

sets in 
,par in

(5.7): 

 , 1, 2, 3, 4, 5,par i i i i i i
   n q q q q q  

where   indicates the cardinality. From this vector, it is possible to build the 

Cartesian product matrix: 

 

1, 2, 3,

1 1 1 1 1

1 1 1 1 2

1 1 1 2 1

1 1 1 2 2

1 1 2 2 1

1 1 2 2 2

2 2

i

i i i

 
 
 
 
 
   
 
 
 
 
  

G

q q q

    

 (5.8) 

For the matrix  in Eq. iG (5.8), it was assumed that 4, 5, 2i i q q , since / ,p a if  

and 1/2,if  are binary variables. If the position of the DSM on the orbit (pericentre or 

apocentre) or the position of the planetary intersection can be determined a priori, 

then 4, 5,, 2i i q q . Each row of  is a vector representing a different type of 

transfer. In general, the matrix has 

iG

 parj
n j  rows, which is also the number of 

different transfers for a given leg. The parameters for the jth type of transfer can be 
obtained as follows: 

  

 

 

 

 

 

1

2

3

4

5

, 1, ,

,1, 2, ,

,2, 3, ,

/ , 4, ,

1/2, 5, ,

DSM i i k

rev i i k

rev i i k

p a i i k

i i k

m

n

n

f

f











q

q

q

q

q

where . Note that in ACO-MGA this process is repeated for each leg i of 

the transfer. 
 , ,l i j lk G
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5.2.2 The Taboo and Feasible Lists 
A given leg i depends on the preceding legs from 1 to 1i  ; thus, the leg from 
planet  to planet  can be feasible or unfeasible, for the same set of transfer 
parameters, depending on all the preceding legs. For this reason, when an infeasible 
leg is generated, it is necessary to store the path that led to that infeasible leg. Thus, 
all the variables characterising the partial solution preceding the unfeasible one are 
stored in a taboo list. In particular, if the problem involves  legs, then the same 

number of taboo lists are used. The taboo list of leg i contains all the partial 
solutions which are found to be unfeasible due to no feasible trajectory at leg i (but 
feasible for legs 1 ). Thus, the taboo list for each leg is stored in a matrix, 
which has an arbitrary number of rows and a number of columns suitable to store a 
partial solution up to the corresponding leg, i.e. . 

iP 1iP

..,i 

legsn

,. 1

2i
The number of elements in the taboo lists can be limited, to limit the memory 

requirements and the search time. Once one of the taboo lists is full, the optimiser 
can either stop or simply start replacing the older elements. 

Dual to the list of taboo partial solutions, the feasible list stores all the 
solutions, which are completely feasible, i.e. reach the destination planet. This is 
once more a matrix with an arbitrary number of rows and  columns. 2 legsn

Since each solution contained in the feasible list is complete, then it is possible 
to associate an objective value to each one of them because the value of the launch 
excess velocity , all the DSMs, the arrival relative velocity 0v v , and the time of 
flight T are available. A scalar value can be computed from these quantities 
identifying the cost of the trajectories. In the following test cases, for example, we 
will use, as objective value, the v  and a combination of v  and T. 

Note that, since, in general, there is more than one trajectory for a given 
solution (i.e. for a given set of free design variables), the objective value of a 
solution is given by the best trajectory value. 

As for the taboo list, the feasible list length can also be limited for memory 
saving. In this case, when the list is full, the optimisation can either stop or simply 
replace the feasible solutions with the worst (highest) objective value. 

5.2.3 Search Engine 
The search space is organised as an acyclic oriented tree. Each branch of the tree 
represents a leg of the problem, while each node (or leave) represents a different 
destination planet and type of transfer. A population of virtual ants are dispatched to 
explore the tree, searching for an optimal solution. 

The search runs for a given number of iterations , or until a maximum 

number of objective function evaluations  has been reached. An evaluation 

is a call to the model, in order to compute the objective value associated to a given 
solution. 

,iter maxn

,eval maxn

Algorithm 5.3 illustrates the main iteration loop. Each iteration consists of two 
steps: first, a solution generation step (lines 2 to 6), and then a solution evaluation 
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step (line 7). In the former step, the ants incrementally compose a set of solution 
vectors, while the latter invokes the trajectory model to assess the feasibility and the 
objective value of each generated solution. When the main loop of the search stops, 
the feasible list contains all the solutions, which were found feasible, with their 
corresponding objective value. The solutions are then sorted according to their 
objective value. 

 
Algorithm 5.3. Main ACO-MGA search engine. 

 1: While , Do , ,iter iter max eval eval maxn n n n  

 2:  For each ant 1k m   

 3:   Generate planetary sequence (temp x Algorithm 5.4) 

 4:   Generate types of transfers (temp x Algorithm 5.6) 

 5:   If  is not discarded, tempx temp S S x  

 6:  End For 

 7:  Evaluate solutions  S  (Algorithm 5.7) 

 8:   Update feasible list and taboo lists 

 9:  Update  ,iter evaln n

 10: End Do 

 11: Sort feasible list according to y. 

SOLUTION GENERATION 
The tree is simultaneously explored, from root to leaves, by m ants. At each 
iteration, each one of the m ants explores the tree independently of the others, but 
taking into account the information collected by all the ants at the previous 
iterations, through the feasible list and the taboo lists. As an ant moves along a 
branch, it progressively composes a complete solution. At first, each ant assigns a 
value to the odd entries of the solution vector, i.e. composes the sequence of 
planetary encounters, then it assigns a value to the even entries of the solution 
vector, i.e. the parameters defining the type of transfer for each legs.  

Planetary sequence generation 

The process is described in Algorithm 5.4. Each ant composes a solution adding one 
planet at the time. As the departure planet is given, the ant has only to choose the 
destination planet for each leg. The choice is made probabilistically by picking from 
the list ,P iq  of possible celestial bodies for the ith leg. The selection depends on the 

pheromone distribution vector  (one for every leg) which contains the pheromone 

level associated to each body in 
iτ

,P iq . Note that we use the same notion of 

pheromone as in standard ACO [87], however there are some differences. Here, the 
pheromone level of each possible choice at each leg depends on the previous legs, 
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and therefore it is computed at every step. Furthermore, due to the different 
pheromone update rule, here the amount of pheromone is not upper limited to 1. 

 
Algorithm 5.4. The code generates the planetary sequence of the temporary solution 

probabilistically. 
 1: For each leg  1 li N 
 2:    , 1 1 1P i τ 
 3:  For each target body j available at leg i 

 4:     1 2 1tempx i j    

 5:   For each solution l in the feasible list that matches  tempx

 6:    , , , ,

1
P i j P i j planet

l

w
y

    

 7:   End For 
 8:  End For 

 9:    1 2 1tempx i   SelectProbabilityDistribution  iτ  

 10: End For 
 
At every generation, each ant builds a temporary solution vector  by 

incrementally filling in the odd components. Every time an ant is at leg i, the 

pheromone distribution vector is reset to 

tempx

 1 1 1
T

i τ 

tempx

tempx

, ,P i j

. As it will be 

explained, this is equivalent to state that all the planets have equal probability to be 
chosen. The ant sweeps the entire list  substituting the identification number of 

each element in  into the ith odd component of the partial solution vector . 

Then, the feasible list is searched for all the solutions which have a (partial) 
planetary sequence which matches the one in . Say that the jth element of  

is added to , and the partial sequence in  matches the partial sequence of 

the lth solution in the feasible lists, then the pheromone level 

,P iq

,P iq temp

,P i

x

q

tempx

  associated to the 

jth element of q  is increased as follows: ,P i

 , , , ,

1
P i j P i j planet

l

w
y

    (5.9) 

The amount of pheromone deposited which is added depends on the objective 
value l  of the matching solution in the feasible list, and on the weight planetw . 

Once the pheromone update has been done for all the possible choices, the 
probability of selecting one of them is given by 

y

, , , , , ,P i j P i j P i j
j

Pr    , and a 

random selection is performed according to this discrete probability distribution. 
Thus, the probability of choosing the jth planet increases according to how many 
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times it generates a promising sequence (leading to a feasible solution), to the value 
of the feasible solution itself, and to the parameter . planetw

This mechanism is analogous to the pheromone deposition of standard ACO 
and aims at driving the search of the ants toward planetary sequences, which 
previously led to good solutions. In fact, those planets which generate (partial) 
sequences that appear either frequently in the feasible list, or rarely, but with low 
objective function are selected with higher probability. On the other hand, the 
probability of selecting other planets from  remains positive, such that one or 

more ants can probabilistically choose a planet that generates an undiscovered 
sequence. Note that, if the feasible list is empty, then all the planets have the same 
probability to be selected. 

,P iq

The parameter  controls the learning rate of the ants. A low value of 

 will make the term 
planetw

planetw planet lw y  small, and thus the probability distribution will 

not change much, even if the solution appears repeatedly in the feasible list, or with 
low values of y. Thus, a relatively low value of  will favour a global 

exploration of the search space, while a high value of  will greatly increase 

the probability of choosing a planet which led to a feasible sequence. If the value of 
 is high enough with respect to a reference objective value, then the ant will 

preferably choose a feasible sequence, rather than trying a new one, which has not 
proven to be feasible. For these reasons, we can say that low values of  will 

favour local exploration of planetary sequences. 

planet

plane

w

w t

planetw

planetw

Algorithm 5.5 shows how a choice is made among several, given the (non-
normalised) probability distribution vector among all the possibilities. 

The procedure iterates for all the legs of the problem. At the end, all the odd 
entries of the temporary solution  contain a target planet and the planetary 

sequence is completed. The next step is to find the type of transfers for each leg, 
thus filling the even entries of  and complete the solution. 

tempx

tempx

 
Algorithm 5.5. This function chooses a random value from a discrete distribution 

function [87]. 

Function j SelectProbabilityDistribution  τ  

 1: jj
s   

 2:  randr s 
 3:  1j 
 4: p 1  

 5: While p r  

 6:   1j j 
 7:  jp p    

 8: End While 
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Type of transfer generation 

Once a ant has composed a temporary solution , containing the planetary 

sequence, it proceeds assigning the values associated to the type of transfer for each 
leg. Similarly to the planet sequence generation, for each leg, all the available types 
of transfer are assigned, one at the time, to the temporary solution . A vector 

 for which a value is assigned to both the odd and even component up to leg i 

represents a partial solution. For each new partial solution, at first the taboo list is 
checked. If the partial solution appears in the taboo list, then it means that this 
solution will be unfeasible, regardless of the way the solution is completed. The 
pheromone level of the type of transfer associated to that sequence is set to zero, to 
avoid the future selection of this type of transfer. If the partial solution does not 
appear in the taboo list, the feasible list is searched for feasible solutions which 
match the partial solution . This time, the solution has to match up to the 

considered leg, both for the planetary sequence and for the types of transfer. 

tempx

tempx

tempx

tempx

For every match found, the pheromone level for that type of transfer is 
modified as follows: 

 , , , ,

1
t i j t i j type

l

w
y

    

The weighing  is introduced, with analogous meaning to , to regulate the 

learning rate of the type of transfer: in fact, the higher the coefficient, the higher the 
chances that solutions similar to the feasible ones are generated. Conversely, a low 
value of  will favour the selection of sequences with a different type of transfer, 

thus increasing the random exploration of the whole solution space. 

typew planetw

typew

If, at a given leg i, all possible transfer types correspond to partial solutions 
which are in the taboo list, the vector of pheromone distribution  will be full of 

zeros. As a consequence, the solution  (which can be partial or complete) is 

discarded, and the ant can stop its exploration of that branch of the tree. 

,T iτ

tempx

At the end of the solution generation step, the solution  is either discarded 

or completed. Once all the ants completed their exploration, the result is a number 
of solutions (less than or equal to the number of ants m) to be evaluated. The 
procedure is summarised in 

tempx

Algorithm 5.6. 

SOLUTION EVALUATION 
Once a set of solutions S has been generated by the ants, each solution has to be 
evaluated to assess its feasibility and its objective value. This is done by calling the 
trajectory model. Algorithm 5.7 illustrates the procedure for evaluating the 
solutions and storing their feasibility and objective values. 
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Algorithm 5.6. The code generates the types of transfer of the temporary solution 
probabilistically. 

 1: For each leg  1 legsi n 

 2:    , 1 1 1T i τ 
 3:  For each type of transfer j available for leg i 

 4:     2 2 1tempx i j    

 5:   If  is in taboo list of leg i Then tempx

 6:    , , 0T i j   

 7:   Else 
 8:    For each solution l in the feasible list that matches with  tempx

 9:     , , , ,

1
T i j T i j type

l

w
y

    

 10:    End For 
 11:   End If 
 12:  End For 
 13:  If , , 0T i jj

   Then 

 14:   Discard this solution, Terminate 
 15:  Else 

 16:     2 2 1temp i  x SelectProbabilityDistribution  iτ  

 17:  End If 
 18: End For 

 
Algorithm 5.7. Solution evaluation. 

 1: Remove duplicate solutions from the set S  
 2: For each solution  i S S  

 3:  EvaluateSolution, unfy l      ,iS p  

 4:  If  0ul 
 5:   Put  iS  in taboo list of leg  unfl

 6:  Else 
 7:   Put  iS  in feasible list, with objective value y 

 8:  End If 
 9:  End For 

 
Before evaluating the solutions in the set, duplicates are removed: in fact, since 

the ants explore simultaneously and without directly sharing any information 
among each other, there is the possibility of having ants generating the same 
solution during the same iteration. 

At this point, solutions in S are evaluated one by one, by means of the model 
presented before. The trajectory model can be seen as a function which takes a 
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solution vector x as an input, and gives as an output either an objective value y (if 
the solution is feasible) or the leg at which the solution becomes unfeasible : unfl

 , unfy l    EvaluateSolution  ,x p  

where 0unfl   if the solution is feasible and p is the constant vector containing 

the values of  and 0t 0 . If the solution is feasible, then it is stored in the feasible 

list, otherwise it is stored in the th taboo list. unfl

5.2.4 Comparison with Standard ACO 
The way in which the ants generate the solutions (or tours, to use ACO 
nomenclature) is similar to what happens in the travelling salesman problem (TSP) 
through ACO. In its basic form, ACO is a meta-heuristic to tackle hard 
combinatorial problems. The inspiring source of ACO is the foraging behaviour of 
real ants [89]. 

Unlike in genetic algorithms, where a population of agents evolve 
simultaneously, interact with the others (e.g. crossover) and are recombined to 
generate the offspring, in ACO each artificial ant explores the space independently 
of the others. The ant generates the tour by adding nodes (or cities) one at a time. 
Each node is chosen probabilistically among a set of available nodes: for the TSP, 
the available nodes are the cities which have not been visited in the current tour. 
The probabilistic model of ACO is called the pheromone model. The pheromone 
value update makes the search process that is performed by ACO algorithms 
adaptive, in the sense that the accumulated search experience is used in order to 
direct the future search process. 

For the MGA problem, nodes are all the possible pairs of bodies and types of 
transfers for each leg. For both standard ACO and ACO-MGA, the probability is 
distributed among all the possible choices, and then a selection is made, according 
to the probability distribution. In the case of ACO, the probability of each city is 
computed by taking into account the heuristic information and the pheromone 
relative to the edge connecting the current city to the next city. In the case of the 
MGA problem, instead, the generation of the solution is done in two steps: the first 
to determine the planetary sequence and the second to determine the type of 
transfer. Both the steps use the same approach: the probability is computed by 
taking into account the objective value of all the feasible solutions which share the 
same partial solution. In addition, taboo lists are checked to avoid solutions known 
to be unfeasible. Taboo lists have no equivalent in classical ACO, as for the TSP all 
the solutions are feasible. Furthermore, the ants are allowed to visit the same tour 
more than once, as this will reinforce the amount of pheromone along the whole 
tour. 

The evaluation step can be seen as the analogous of the “pheromone update” in 
ACO, with a difference. In the MGA problem, as opposed to the TSP tackled with 
ACO, the pheromone cannot be assigned to single legs of the trajectory: this is due 
to the fact that each leg (identified by its couple of integers) has no intrinsic value in 
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the trajectory, if disconnected from the previous legs. In other words, the only two 
parameters (planet and type of transfer) are not sufficient to fully characterise one 
leg: the actual value of the leg depends also on its initial conditions, which are in 
turn determined by the parameters of the previous legs. 

To explain this idea, we make reference to Fig. 5.11 and Fig. 5.12: the former 
shows a typical instance of the TSP. In this problem, the distance between each pair 
of cities is fixed, and it can be computed given the instance of the problem itself: 
the relative distances of n cities can be stored in a n n  matrix [87]. Moreover, the 
relative distance of the cities (or length of the edges of the graph), which is 
providing the heuristic information and also contributing to the objective function, 
does not depend on the previous cities visited during the tour. This means that an 
edge will give the same contribution to the overall length of the tour, regardless of 
the rest of the tour. For example, Fig. 5.11 shows two different tours for the given 
TSP instance: 1-4-3-2-5 (continuous line) and 1-2-4-3-5 (dashed line). The edge 3-4 
is shared by the two different tours: this edge will obviously contribute in the same 
way to the objective function in both tours, i.e. the distance between city 3 and 4. 
This is due to the fact that the objective function is the total distance covered by the 
tour. 

 

5

4
3

2

1
 

Fig. 5.11. A five-node instance of the TSP, with two possible solutions, identified by 
continuous and dashed arrows. 

 

Leg 3 Leg 2 Leg 1 
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Fig. 5.12. A representation of a three-leg MGA problem, and two proposed solutions, 

identified by continuous and dashed arrows. Each node represents a 
combination of body/type of transfer. Despite the two solutions share the 
same parameters for the last leg ([1, 1]) 
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This is not true for the problem under consideration. Fig. 5.12 is a 
representation of a simple instance of the problem: it has 3 legs, 2 types of transfer 
for each leg, 2 planets for the swing-bys, and 1 target planet. Each node represents a 
possible planet in combination with a type of transfer. The couples of numbers next 
to each node in Fig. 5.12 are the two integers identifying the leg in the solution 
vector (see Section 5.2.1). A solution is generated by selecting one node for each 
leg, thus generating a tour which connects the starting node to one of the final 
nodes, representing types of transfers to reach the target planet. The figure 
represents two possible solutions to the problem: [1, 1, 2, 1, 1, 1] (continuous line) 
and [2, 2, 2, 1, 1, 1] (dashed line). These two solutions share the same parameters 
for the last leg: [1, 1]. This means that they reach the same target planet with the 
same type of transfer. Because of the dependency of each leg from the initial 
conditions, it is not possible to state that the last leg is the same for the two 
solutions: in fact, the two trajectories can be consistently different, and lead to 
different final conditions and objective function. 

For this reason, it makes no sense for example to assign a value to the set of 
parameters [1, 1] on leg 3 in Fig. 5.12. It is allowed instead to assign a value to the 
edge 3-4 in Fig. 5.11. 

A different representation of the continuous-line solution in Fig. 5.12 is the one 
shown in Fig. 5.13. This other representation exploits a tree to underline that every 
branch of the tree depends on the previous ones. Both solutions of Fig. 5.12 are 
highlighted with arrows in the tree, and it is clear that the set of parameters [1, 1] 
for leg 3 leads to two different solutions. 

5.3 Case Studies 

The proposed optimisation method was applied to two case studies inspired by the 
BepiColombo [32] and Cassini [22] missions. 

Since the launch date is not taken into account in the optimisation, in the 
following tests it is considered fixed. In a real mission design case, where the 
launch date is to be determined, the entire launch window can be discretised with a 
given time step, and a systematic scan of several dates within the whole launch 
window should be run. The launch direction 0  is also kept fixed in these tests, 
although it is easy to find heuristics for determining the value of this parameter, or 
discretise it and include it in the optimisation process as an additional variable. 

ACO-MGA was tested against population-based algorithms, which are known 
to perform well on these kinds of problems. In particular, it was chosen to use the 
genetic algorithm implemented in MATLAB® within the Genetic Algorithm and 
Direct Search Toolbox™ (GATBX) [120], the Non-dominated Sorting Genetic 
Algorithm (NSGA-II) [121], and an implementation of Particle Swarm 
Optimization in Common type [122]. Settings for all the optimisers will be 
specified for each test case. While NSGA-II can deal with discrete variables, 
GATBX and PSO only use real variables: a wrapper of the objective function was 
coded to round the continuous solution vector to the closest integer. 
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Fig. 5.13. Tree representation of the MGA problem of Fig. 5.12, and the two 
proposed solutions. This representation highlights the dependence of each 
edge of the graph from the previous history.  

 
Due to the stochastic nature of the methods involved in the comparative tests, 

all the algorithms were run 100 times. The performance index used to compare the 
ACO-MGA against the other global optimisers is the success rate: according to the 
theory developed in [65] 100 repetitions give an error in the determination for the 
exact success rate of less than 6%.  

Some preliminary tests showed that the best performances of ACO-MGA are 
achieved if the algorithm is run in 2 steps, using different sets of parameters. In 
particular, in the first step, the weights  are set to 0. Remembering Eq. ,planet typew w

typew

(5.9) this choice translates into an initial pure random search. In fact, the feasible 
solutions found do not alter the probability distribution. On the other hand, the 
probability of taboo partial solutions is still set to zero to avoid their re-exploration. 
In the second step, weights are set to non-null values, to explore around the feasible 
solutions found. The values of  are set such that: ,planetw

 ,planet type estw w w y   (5.10) 

where  is the typical, estimated value for the objective function, and it is used to 

normalise the right hand side of Eq. 
esty

(5.9). In this way, choosing for example , 
means that 1 is added to the pheromone of a given element every time a matching 
solution with objective  appears in the feasible list. Obviously the value of 

1w 

esty
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added pheromone is higher if the objective value of the matching feasible solution 
is lower. 

This two-step procedure can be explained in the following way. The first step 
allows a random sampling of the solution space, with the aim of finding a good 
number of feasible solutions. This is done to prevent the algorithm to stagnate 
around the first feasible solution found. 

The second step intensifies the search around the feasible solutions which were 
found at step one. Because of Eq. (5.9), feasible solutions with low objective value 
are likely to be investigated more. In addition, the random component in the process 
does not forbid to keep exploring the rest of the search space. 

The test cases were run on an Intel® Pentium® 4 3 GHz machine running 
Microsoft® Windows® XP. 

5.3.1 BepiColombo Case Study 
In this mission, the spacecraft departs from Earth (on 15 August 2013, i.e.  

) to reach a scientific orbit around Mercury: therefore, it is 

advisable to minimise the relative velocity at arrival v
0 4974.5 d, MJD2000t 

 . The launch date has been 
set to match the one proposed in [31], such that a reference solution for this date is 
available. Three legs (and thus two swing-bys) are considered for the transfer, while 
the launch angle was set to 0  . For the first and second legs, the following set 
of parameters was considered: 
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Since there is no DSM, the parameters  and ,1revn /p af  are not used, and thus are set 

to 0. The number of revolutions is entirely controlled by the parameter . In 

general, there is no easy way to identify whether the first or the second orbital 
intersection is the best one, so the binary parameter 

,2revn

1/2f  was left free to be chosen 
by the ants. For the third leg, parameters were chosen from: 
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In this case, a DSM can be exploited to target Mercury and to reduce the  

with respect to it. The departure excess velocity module  is constrained to be 
within 2 and 4 km/s, which implies the following set of starting guess points for 
Brent’s method: 

v

0v

  2, 2.5, 3, 3.5, 4  km/s  

The following set of starting points for  was used instead for both Venus and 

Mercury: 
pr

  1,1.02,1.04, , 5 PR  

and  ,ps p pr r r  . The total time of flight was limited to a maximum of 10 years 

and the objective function for a complete solution is the v  at Mercury. The 
average time for evaluating one solution (finding all the trajectories that it 
generates) of this test case is 1.75 ms, and there are 54000 distinct solutions. Thus, a 
systematic approach, scanning all the solutions, would require about 94.5 s. 

All the optimisers were run for up to 2000 function evaluations. GATBX, 
NSGA-II and PSO were run with the settings shown in Table 5.3. In addition, the 
initial population of GATBX is spread in the whole domain. 

Results in the form of statistical parameters over the 100 runs are presented in 
Table 5.4. The best average value is computed on the runs which found feasible 
solutions only, while the value of 6 km/s as a target value for the  has been 
chosen to compute the success rate according to the procedure proposed in [

v
31]. 

 
 
 

Table 5.3. Parameters of GATBX and NSGA-II for the BepiColombo test case. 
GATBX  NSGA-II  PSO 

Parameter Value  Parameter Value  Parameter Value 
Generations 20  ngen 100  iter 20 
PopulationSize 100  popsize 20  pop 100 
StallGenLimit +∞  pcross_bin  0.5  iiw 0.9 
   pmut_bin 0.5  fiw 0.4 
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Table 5.4. Comparison of the performances of ACO-MGA, GATBX, NSGA-II on 100 
runs of the BepiColombo problem. Refer to the text for the two settings of 
ACO-MGA. 

 Average best value 
found, km/s 

% runs finding < 
6 km/s 

% runs finding a 
feasible solution 

ACO-MGA (1) 6.102 26% 100% 
ACO-MGA (2) 6.176 24% 100% 
GATBX 8.82 13% 98% 
NSGA-II 9.957 2% 100% 
PSO 11.443 3% 99% 

 
Two different set of parameters were used for ACO-MGA: (1) in Table 5.4 

refers to a first step with 200 iterations and , 0planet typew w  , followed by a second 

step of 200 iterations with , 2planet typew w 0 3 km/s  ; (2) instead uses the same 

values for the weights, but the first step has only 60 iterations, while the second 
440. This shows that a high number of iterations allocated to the second step does 
not necessarily improve the results, if the first step did not sample enough random 
points in the solution space. ACO-MGA was run on the same optimisation problem 
for different values of the weights, and the best results were obtained with the 
values mentioned before. Because of the normalisation shown in Eq. (5.10), the 
weight values appear to have general validity, and can be applied also to other 
transfer problems, as will be shown in the next case study. 

Since the size of the population is very important for genetic-based algorithms, 
and it can affect the results significantly, this case study was also run 100 times 
with a population of 40 and 100 individuals (maintaining the predefined number of 
total function evaluations by varying the number of generations accordingly). For 
NSGA-II, it resulted that there was no noticeable change in the quality of the results 
over 100 runs. This is related to the fact that NSGA-II is not completely converging 
with 2000 function evaluations. 

PSO was run for a number of different settings, ranging between 
 and  . Very little difference in the 

quality of the results was found, being the best choice close to the former set of 
parameters; hence the choice in 

 10, 200iter pop  200, 10iter pop 

Table 5.3, that was used for obtaining the results in 
Table 5.4. As a comparison, by choosing the latter set of parameters, an average of 
about 14 km/s is obtained, with only 75% of feasible runs and 1% below 6 km/s. 

As a reference, by increasing the number of function evaluations to 10000, the 
average value of the solution from NSGA-II lowered to 7.47 km/s, with 18% below 
6.5 km/s. This shows a considerable improvement but the result is still worse than 
ACO-MGA. 

For GATBX, instead, results were changing significantly, and the settings 
leading to the best solutions were used. 

The results in Table 5.4 point out that, while all the algorithms find feasible 
solutions in practically all the runs, the quality of the solution is much better for 
ACO-MGA, for either of the two different sets of settings used. Moreover, NSGA-
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II found a good solution only in 2 runs, and GATBX in 13. ACO-MGA, instead, 
found a good solution in about 25% of the runs. 

The run time for ACO-MGA (1) was about 220 s. The simplicity of the test 
case, together with the implementation of ACO-MGA in a interpreted language like 
MATLAB®, makes the use of an optimisation method slower than the systematic 
scan of the whole solution space. Note that this will not happen in the more 
complex Cassini test case. 

The performance values of ACO-MGA can be greatly improved by considering 
a slightly different instance of the BepiColombo transfer problem. Let us assume a 
list for  which spans down to 0.9pr PR : 

  0.9, 0.92, 0.94, , 5 PR  

Here a comment is needed: it is usual practice, in preliminary mission design, 
to consider a safety margin in the closest approach of a planet during a swing-by 
manoeuvre. Usually this translates in considering a radius of pericentre not smaller 
than 1.1 PR . The main reason for using a slightly lower minimum altitude is that 
the number of feasible solutions in the solution space increases, since each swing-
by can provide a higher deflection of the velocity vector, and thus the search for the 
optimal solution results more favourable for all the optimisers, but in particular for 
the population-based ones. We can also assume that the safety margin can be added 
when the solution is re-optimised with a more complete model, and assume that a 
DSM can compensate for the lack of swing-by deflection. Note that this trick will 
not be adopted in the more realistic case study presented in the next section. 

The results for this second test case are presented in Table 5.5. All the 
algorithms perform better on this second instance of the problem, but ACO-MGA 
improved dramatically, finding good solutions in 98% of the runs. The best solution 
found by ACO-MGA is represented in Fig. 5.14. The sequence for this solution is 
EVVMe, and the objective value, i.e. the final relative velocity, is 

. The parameters for this solution are presented in 5.5082 km/sv  Table 5.6. 
 
 

Table 5.5. Comparison of the performances of ACO-MGA, GATBX, NSGA-II on 100 
runs of the BepiColombo problem with extended bound on rp. 

Optimiser Average best value 
found, km/s 

% runs finding < 
6 km/s 

% runs finding a 
feasible solution 

ACO-MGA (2) 5.67 98% 100% 
GATBX 8.15 26% 97% 
NSGA-II 9.58 7% 100% 
PSO 11.32 5% 97% 
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Table 5.6. Parameters of the best solution found by ACO-MGA for the BepiColombo 
case study. 

Parameter Leg 1 Leg 2 Leg 3 
Planet V V Me 

DSMm , m/s 0 0 -50 

,1revn  0 0 0 

,2revn  1 3 4 

/p af  0 0 1 

1/2f  0 0 1 
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Fig. 5.14. The best solution found by ACO-MGA, with objective value 5.5082 km/s. 

The planetary sequence is EVVMe. 
 
The validity of the model is verified by re-optimising the best solution found 

with ACO-MGA, but using a full 3D model with 1 free DSM per leg [102], and 
minimising the total . The resulting trajectory is shown in v Fig. 5.15. In 
particular, Fig. 5.15 (a) shows the x-y projection of the trajectory, while Fig. 5.15 
(b) shows the relevant out of plane component that is introduced while considering 
a full 3D model with real ephemerides, and mainly due to the high inclination of 
Mercury. 

Finally, Table 5.7 compares some parameters of the 2D solution with the re-
optimised 3D solution and the ESOC reference solution. Note the similarity of the 
3D trajectory to the one found by ESA and described in [31]. The values i  refer to 

the fraction of time of flight  of ith leg at which the DSM occurs in the 3D model. iT
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(a) Projection on ecliptic plane 
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(b) Side view 

Fig. 5.15. The solution re-optimised with a full 3D model, minimising the total Δv. (a) 
The projection of the trajectory on the ecliptic plane; (b) The side view 
highlights the out-of-plane components of the trajectory, mainly due to the 
need of targeting Mercury, whose orbit is relatively high inclined. 

 
It is interesting to note that the launch velocity is higher in the 3D version 

mainly because of the small inclination of the planets. The v  also is higher due to 
the inclination of the target planet but again the difference is small. 

On the other hand, the optimisation is able to move and fine tune the position 
of the DSMs along the transfer leg, thus reducing the amount of deep space . 
This is particularly evident on the third leg, in which the position of the DSM 

v
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(represented by 3 ) was considerably moved forward in time. This can only 
partially be done by the planar model, as DSMs are constrained at the apsides of the 
orbit. Note that the values of i  for the ACO-MGA model are not parameters, but 
were computed a posteriori. 

 
Table 5.7. Characteristics of the best solution found by ACO-MGA, the same solution 

after optimisation with a full 3D model, and the ESOC reference solution. 
Variable ACO-MGA 3D optimised ESOC 

0v , km/s 3.63 3.8 3.79 

1v , m/s 0 7 7 

2v , m/s 0 0 0 

3v , m/s 50 11 11 
v , km/s 5.51 5.68 5.68 

1T , d 438.5 438.5 438 

2T , d 674.1 674 674.1 

3T , d 630.8 630.8 630.9 

1  0.04 0.04 0.05 

2  0.02 0.02 0.1 

3  0.01 0.12 0.12 

,1pr , planet radii 1.47 1.3 1.3 

,2pr , planet radii 2.14 1.21 1.21 

LAUNCH DATE ANALYSIS 
As mentioned before, the algorithm, at the current state, does not perform any kind 
of search on the launch date 0 . In fact, this variable is not even included in the 
solution vector s. Rather, if the launch date is not fixed, but a launch window is 
available, a systematic scan can be performed to find the best launch date, and the 
corresponding solutions. This procedure is not always applicable: in fact, if re-
running the algorithm for a small change in the launch date, the solutions that ACO-
MGA finds are substantially different, then the systematic scan along 0t  is not 
feasible, and this variable must be taken into account in the optimisation process. If, 
on the other hand, a small displacement along 0  causes a small change in the best 
solution found (e.g. same planetary sequence, possibly different types of transfers, 
similar objective value), then the systematic scan is a tool for identifying the 
promising launch possibilities. 

t

74.5 d,

t

A test for verifying this assertion was run using the BepiColombo transfer 
problem. As stated before, the optimal launch date can be found in [31], and let 
identify it here with . 0

Five different launch dates, in a window of 10 days around the one chosen by 
ESA, were considered, and for each one of them, 100 runs were used. The 
corresponding best solution values are found in 

49  MJD2000 t

Table 5.8. The result is that the best 
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solution is found about 1 day before 0t
 , while earlier or later launches become less 

convenient. In addition, all the solutions around the ideal launch date have the same 
planetary sequence of swing-bys. 

The discrepancy between the value of v  found by ACO-MGA and the one in 
[31] has two causes: the first is that ACO-MGA does not take into account the 
inclination of the planets, and the orbit of Mercury is highly inclined. The second is 
that the ESA solution was found as a part of a longer trajectory, and thus with a 
different objective. 

The same reasons explain why, according to ACO-MGA, the ideal launch date 
is 1 day earlier. As a matter of fact, this is not a problem, and a subsequent local 
optimisation of the ACO-MGA solutions with a full model would tune the launch 
date. 

The same analysis was extended for a wider interval of 0 030 d, 30 dt t     , 

with a one-day step, and 100 runs for each . 0t Fig. 5.16 shows, for each launch 
date, the best and average solution found by the 100 runs: it highlights that there are 
two intervals of dates in which the optimal solution is more difficult to find by the 
ants. The same information can be obtained more in detail from Fig. 5.17, that 
displays the number of runs that found a solution at most 0.01, 0.1 and 0.5 km/s 
worse than the best one for that date. The same bar plot highlights that all the runs 
found a feasible solution. 

This test demonstrates that the 2D model and the search process in ACO-MGA 
yield a distribution of solutions, along the departure time axis, that is consistent 
with the existing reference solution for this mission. The convergence of ACO-
MGA is robust against variations of the launch date, as it consistently provides, 
solutions with unchanged planetary sequence that display a small variations in the 
cost function for small variations of the launch date. These properties together with 
the small computing time suggest that ACO-MGA can be used to systematically 
scan the launch dates in search for an optimal one. Note that, as the model in ACO-
MGA is intended for the generation of first guess solutions, the scan of the launch 
dates is expected to provide only an estimated location of the optimal point along 
the launch date coordinate. 

 
Table 5.8. Best solutions to Mercury found by ACO-MGA for different launch dates. 

Launch date  0t
Optimal 
sequence 

y v , km/s 

0 5 dt   EVVMe 5.98 

0 1dt   EVVMe 5.84 

0t
  EVVMe 6.10 

0 1dt   EVVMe 6.62 

0 5 dt   EVVMe 6.72 
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Fig. 5.16. Average and best solutions found by 100 runs for each launch date around 

the optimal one. 
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Fig. 5.17. For each launch date, number of runs (out of 100) that found a solution 

which is at most 0.01, 0.1 and 0.5 km/s worse than the best solution found 
for that launch date. Also, runs that found a feasible solution.  

5.3.2 Cassini Case Study 
Cassini is the ESA-NASA mission to Saturn. The planetary sequence designed for 
the mission, EVVEJS is particularly long, allowing a substantial saving of 
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propellant. For testing the ACO-MGA we will make use of a 5-leg trajectory, with 
starting date , corresponding to 13 November 1997. The 
following sets of parameters were used for the first 3 legs: 

0 779 d, MJD2000t  
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Thus giving quite a wide choice of DSMs. For the last two legs, instead, no 
DSM is allowed: 
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The planets available for swing-bys are  Venus, Earth, JupiterP q

,1revn n

, while the 

target planet is obviously fixed to Saturn. The number of maximum full revolutions 
was fixed to 0, as it can be seen from the choice of parameters  and . This 

is done to limit the total time of flight of the mission. Since the trajectory is going 
outwards of the orbit of the Earth, every full revolution implies more than one 
additional year in the transfer time. The main aim of this case study, then, is to 
assess the ability of finding promising planetary sequences, using DSMs. The total 
number of distinct solutions for this test is 7,112,448, and the average time to 
evaluate a solution is 1.26 ms. This translates in 8961.7 s (or about 2.5 hours) to 
systematically evaluate all the solutions. 

,2rev

As for BepiColombo, the launch excess velocity module was bounded between 
2 and 4 km/s. For the swing-bys of Earth and Venus, the radii of pericentre are  

  1.1,1.2,1.3, , 5 PR  

while a different choice was adopted for Jupiter. In fact, the mass of this planet is 
considerably bigger than the masses of Venus and Earth, so higher radii of 
pericentre are enough to achieve considerable deviations. Furthermore, since the 

function  psr  is very smooth in this case, the first guesses are spaced with a 5 

Jupiter radii step size: 

  5,10,15, ,100 PR  
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Regarding the choice of the objective function, it has to be noted that for all the 
missions to outer planets, the time of flight becomes very important, as very long 
missions are needed to reach farther destinations. Even limiting the number of 
complete revolutions to zero, is not enough to guarantee a mission with reasonable 
duration. Therefore, it is important to include the total time of flight T in the 
objective function, in addition to the total v . Since the current algorithm cannot 
deal with multi-objective optimisation, the total time of flight and the  are 
weighed inside the objective function in the following way: 

v

 y v T   

and for this test case the weight on T was chosen to be 1 1000  km/s/d  . 
The total time of flight has been limited to a maximum of 100 years. This 

bound may seem to be too high, since a realistic time span of a transfer to Saturn is 
around 10 years. However, the model considers unfeasible all the solutions longer 
than the specified time of flight threshold, and the optimiser saves them as taboo. 
Therefore, limiting the time of flight to lower values would over-constrain the 
search for optimal solutions. Better results are obtained by allowing long solutions 
to be returned as feasible, and introducing their duration into the objective function. 

The three optimisers were run at first for 4000 and then for 6000 function 
evaluations. The weights of ACO-MGA were set to , 0planet typew w   for the first 

step, and  km/s for the second step. For each step, the number of 

iterations of ACO-MGA was set such that the expected total maximum number of 
function evaluations was 4000 for the first bunch of runs and 6000 for the second 
bunch of runs. In particular, for 4000 function evaluations, the number of iterations 
allocated to the first step was 200 and the number of iterations allocated to the 
second step was 300. For 6000 function evaluations, instead, the number of 
iterations allocated to the first step was increased to 600 and the number of 
iterations allocated to the second step was left equal to 300. With these settings, a 
run of ACO-MGA requires, on average, 1900 function evaluations and 161 s, if the 
upper limit is 4000, and 3300 function evaluations and 273 s, if the upper limit is 
6000 evaluations. This is considerably faster than the exhaustive scan of the 
solution space and the number of function evaluations is lower than in the case of 
GATBX and NSGA-II, however the computational time for each single run of 
GATBX, which is fully coded in MATLAB®, is, on average, half of the one 
required to ACO-MGA as the access to the taboo and feasible lists is currently not 
optimised. NSGA-II is even faster as the code is fully in C. Therefore, a fair 
comparison would allow GATBX and NSGA-II to perform a higher number of 
function evaluations. However, a run of ACO is considerably faster than the 
exhaustive scan of the solution space. 

, 20 7planet typew w  

The parameters used for GATBX and NSGA-II are reported in Table 5.9. The 
comparative results for the two sets of runs are shown in Table 5.10. It can be seen 
that, for 4000 evaluations, ACO-MGA found feasible solutions in 91% of the runs, 
compared to 25% of GATBX and 26% of NSGA-II. The average ACO-MGA 
solution is also slightly better than GATBX, and considerably better than NSGA-II. 
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The performances of ACO-MGA increase significantly by using 6000 evaluations: 
all the runs produce a feasible solution, and in 80% of the cases, the best solution 
found is below 16 km/s. The average value of the solution also decreases to 15.434 
km/s. It is interesting to note that, for GATBX, the average best solution found with 
6000 evaluations is higher than for 4000: this is partly balanced by the fact that it 
finds feasible solutions in 28% of the runs. Another thing worth noticing is that 
NSGA-II finds more often feasible solutions than GATBX, but their quality is on 
average worse. 

The best solution found through ACO-MGA has an objective value of 6.9686 
km/s, corresponding to the parameters shown in Table 5.11. The characteristics of 
this solution can be found in Table 5.12, compared to the best solution known so far 
as reported in the ACT web site. The trajectory of the ACO-MGA solution is shown 
in Fig. 5.18, while the 3D reference solution is in Fig. 5.19. 

It is interesting to sort the feasible sequences found by ACO-MGA according 
to the best objective value that they can achieve. The bar graph in Fig. 5.20 shows 
the outcome: note that every sequence has a trajectory associated to it, modelled as 
shown before, and thus taking into account the phasing problem. This means that 
these solutions could be re-optimised with a more detailed model (in particular 
including the third dimension), leading to actual transfer solutions. 

 
Table 5.9. Parameters of GATBX and NSGA-II for the Cassini test case. 

GATBX  NSGA-II PSO Function 
evaluations Parameter Value  Parameter Value Parameter Value 

StallGenLimit +∞  pcross_bin 0.5 iiw 0.9  
   pmut_bin 0.5 fiw 0.4 
Generations 20  ngen 200 iter 200 4000 
PopulationSize 200  popsize 20 pop 20 
Generations 30  ngen 300 Iter 300 6000 
PopulationSize 200  popsize 20 Pop 20 

 
Table 5.10. Comparison of the performances of ACO-MGA, GATBX, NSGA-II on 100 

runs of the Cassini problem. 
Function 

evaluations 
Optimiser 

Average best 
value found, km/s 

% runs finding 
< 16 km/s 

% runs finding a 
feasible solution 

ACO-MGA 16.24 44% 91% 
GATBX 16.349 14% 25% 
NSGA-II 20.426 5% 26% 

4000 

PSO 24.93 1% 3% 
ACO-MGA 15.434 80% 100% 

GATBX 16.526 17% 28% 
NSGA-II 20.122 7% 37% 

6000 

PSO 18.1334 1% 14% 
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Table 5.11. Parameters of the best solution found by ACO-MGA for the Cassini case 
study. 

 Leg 1 Leg 2 Leg 3 Leg 4 Leg 5 
Planet V V E J S 

DSMm , m/s 600 -350 0 0 0 

,1revn  0 0 0 0 0 

,2revn  0 0 0 0 0 

/p af  0 1 1 0 0 

1/2f  0 1 0 0 1 
 

Table 5.12. Characteristics of the best solution found by ACO-MGA and the reference 
solution for the Cassini case study. 

Variable ACO-MGA Reference 

0v , km/s 3.14 3.259 

1v , m/s 600 480 

2v , m/s 350 398 

3v , m/s 0 0 

4v , m/s 0 0 

5

, km/s 

v , m/s 0 0 
v 4.21 4.246 

1T , d 168 167 

2T , d 423 424 

3T , d 53 53 

4T , d 596 589 

5T , d 2290 2200 

1  0.83 0.77 

2  0.52 0.51 

3  0.16 0.02 

4  0.02 0.26 

5  0.13 0.6 

,1pr , planet radii 1.61 1.34 

,2pr , planet radii 1.25 1.05 

,3pr , planet radii 1.32 1.30 

,4pr , planet radii 68.3 69.8 
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Fig. 5.18. Solution to the Cassini problem found with the 2D model and using ACO-

MGA. 
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Fig. 5.19. Cassini reference solution found for the global trajectory optimisation 

problem proposed by ESA ACT. 
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Fig. 5.20. Best objective values found for each sequence. All the other sequences are 

either unfeasible or with a very high objective. 

5.4 Summary 

This chapter introduced a novel formulation of the automatic complete trajectory 
planning problem and proposed a new algorithm (ACO-MGA), based on the ant 
colony paradigm, to generate optimal solutions to this problem. Each solution is a 
complete, scheduled plan. A specific trajectory model was developed to efficiently 
generate families of scheduled trajectories for multi-gravity assist transfers, once a 
plan is available. The 2D trajectory model proved to be accurate enough to closely 
reproduce known MGA transfers even with moderate inclinations. Furthermore, the 
scheduling of the trajectories is fast and reliable allowing for the evaluations of 
thousands of plans in a short time. 

ACO-MGA operates an effective search in the finite space of possible plans. 
The algorithm demonstrated a remarkable ability to find good solutions with a very 
high success rate, outperforming known implementations of genetic algorithms. 



 

6  
 
 
CONCLUSIONS 

This dissertation presented two global optimisation techniques for multiple gravity 
assist (MGA) trajectories with deep space manoeuvres (DSM). This final chapter 
will draw some conclusions on this study. After a summary of the work, some 
remarks will be given, including a summary of the results, followed by the 
limitations and possible areas of further investigation. 

6.1 Summary of the Work 

In this study, tools and methods for interplanetary trajectory design were 
investigated, with particular focus on MGA missions. Gravity assists are necessary 
to deliver consistent payloads to high-energy targets (like farther planets or highly 
inclined orbits) with a limited amount of propellant. High-thrust, impulsive  
trajectories were investigated. The research focused mainly on two aspects: the 
development of a tool for automated trajectory design and the identification of 
families of solutions in the neighbourhood of locally optimal ones. Automated 
design refers to the ability to reliably produce good solutions for a wide range of 
cases, with minimum human intervention. This is a very desirable feature that can 
answer to the main requirement of the modern approach to space mission design: 
the identification of many different optimal or sub-optimal trajectories to be used in 
the initial trade-off analysis. The author believes that the tools developed in this 
thesis satisfy this requirement. It was also highlighted that the design of MGA 
trajectories consists of two problems: the first is the identification of a planetary 
sequence, and the second is to find optimal solutions for a given sequence. If these 
two problems are solved at different stages, then the solution approach has two-
levels. If instead the two problems are solved at the same time, for example with a 
hybrid optimisation method, then the approach is said to be integrated. This thesis 
investigated both approaches. 

v

Chapter 2 introduced two models for MGA trajectories with impulsive DSMs. 
One, named position formulation, allows accommodating multiple DSMs for each 

213 



214 CONCLUSIONS 6. 
 

interplanetary leg, and needs a powered swing-by to match two consecutive legs. 
Each manoeuvre is determined by its position and timing, therefore the name of 
position formulation. A consequence of this choice is that each ballistic arc can be 
computed independently of the others. This model, thus, uncouples the planet-to-
planet legs, at the cost of having to specify the position of each manoeuvre. A 
second model (velocity formulation) computes each leg by propagating the initial 
velocity, which is known from the previous leg, hence the name of velocity 
formulation. In this formulation, the legs are computed sequentially, and one leg 
depends on all the previous ones. On the other hand, swing-bys are unpowered and 
only the timing of the DSM is to be specified. Appendix B introduced a third, more 
versatile, trajectory model paradigm, to compose a trajectory with basic building 
blocks that represent events. This model is suitable for automatic definition of the 
types of events in a trajectory. The two previous models can be obtained using 
building blocks. 

The model based on the velocity formulation was used to create a tool that 
solves the transfer design problem with a two-level approach (see Chapter 3). The 
method is based on the simple consideration that if a given transfer is infeasible 
(due, for example, to a high v ) at the first leg, then there is no need to add and 
compute any more legs: that set of parameters can be removed from the solution 
space. If feasible sets are identified for the first leg, then the rest of the space can be 
pruned out. When the second leg is added to the trajectory, only a small part of the 
space has to be considered. The procedure continues, adding one leg at a time and 
building the whole trajectory incrementally (hence the name). Different techniques 
were proposed to search for feasible solutions and identify the feasible sets at each 
level. 

Although the incremental pruning technique exploits the particular structure of 
the MGA global optimisation problem, the same problem can be (and in literature 
has been) tackled with off-the-shelf optimisers. Therefore, the incremental pruning 
was compared with other stochastic and deterministic global optimisation 
techniques (Multi-Start, Differential Evolution, Monotonic Basin Hopping, 
DIRECT and Multilevel Coordinate Search). 

The incremental pruning procedure, like all two-level approaches, requires a 
planetary sequence defined in advance. To this aim, an algorithm for generating 
possible sequences was designed and implemented. Heuristic rules are used first to 
remove, from the tree of all possible planetary sequences, the trivial ones. A 
successive step exploits energetic considerations to find feasible sequences and rank 
them. This is done relying on some assumptions like circular and planar orbits, 
ballistic transfers, and neglecting phasing. The result is a limited list of feasible 
sequences ranked by value of infinite velocity at the target planet. These lists are 
then passed to the incremental pruning process to find optimal trajectories. 

The combination of the sequence generator and the incremental pruning was 
used to solve real-world mission design cases. This was the topic of Chapter 4. The 
ESA missions BepiColombo and Laplace (currently in design phase) were used to 
this aim. Given initial conditions, requirements and constraints, interplanetary 
transfers were found with the tools proposed in this work, and compared with 
baseline solutions. For both the missions, a transfer phase and a resonant swing-by 
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phase were considered. The solutions found through the incremental method 
demonstrated to be similar, and in some cases better, than those selected for the 
respective missions as baseline. These test cases showed that the incremental 
pruning can be used not only to minimise the cost of a transfer, but also to meet 
other mission requirements, like the time of flight or aim at particular final 
conditions. This was done with the introduction of specific pruning functions. 
Moreover, it was shown that the feasible sets of optimal solutions found by the 
incremental pruning are suitable for further studies and to better understand the 
MGA problem under consideration. It was also verified that the same technique can 
be applied to the very special MGA transfers that use resonant swing-bys of the 
same planet to change the orbital parameters. 

Finally, an integrated approach for MGA trajectory design was presented in 
Chapter 5. A specific planar trajectory model was developed, such that the phasing 
problem is solved internally, and the parameters to characterise the trajectory are 
reduced to a minimum. The real parameters are discretised, such that the whole 
trajectory model and sequence are represented only by categorical variables. 
Therefore, the automated design of an MGA trajectory is transformed into the 
search for the optimal path along an acyclic tree. The tree is explored by a 
population of virtual ants driven by heuristics inspired to the Ant Colony 
Optimization paradigm (hence the name ACO-MGA). The ants explore the tree of 
possible trajectories from root to leaves: when a feasible solution is found, it is 
stored in a list together with its objective value. Each ant chooses one branch of the 
tree probabilistically. The probability distribution is built and updated with the 
collection of all the feasible solution found by the ants: branches that led in the past 
to good solutions are more likely to be chosen. In addition, the algorithm keeps 
track of the solutions that are unfeasible at a given leg, and thus do not reach the 
solution. This way the ants avoid re-exploring unfeasible branches. ACO-MGA 
approach was tested on two different missions of increasing complexity: 
BepiColombo and Cassini. The performances were compared to other stochastic 
optimisers, on the same trajectory model. ACO-MGA outperformed all other global 
optimisers to which it was compared in the test cases, in terms of quality of the 
solution and repeatability of the results. It was also shown that this method allows a 
great time saving with respect to a systematic search in the tree, for complex 
problems like Cassini, in which millions of solutions exist. 

6.2 Final Remarks 

This research addressed the problem of automatic design of MGA trajectories, 
including the choice of the planetary sequence. The author believes that the tools 
and methods developed in this research will be useful for designing future space 
missions, as well as better understanding the complex nature of interplanetary 
trajectory design problems. The author also wishes that this study could contribute 
to and stimulate further research in this fascinating field. 
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All the results obtained with the methods proposed in this thesis were already 
discussed throughout the document, in particular in Chapters 3 and 4 for the two-
level approach, and Chapter 5 for the integrated approach. In this section, a brief 
qualitative summary of the achievements of this study will be done. Then, some 
known limitations of the proposed solutions will be discussed. Addressing these 
limitations is what the author suggests as the next step of the research on this topic. 

6.2.1 Fulfilled Objectives 
The main objectives of this work can be summarised in two main points. The first is 
the automated preliminary design of MGA-DSM trajectories, including both the 
sequence of planetary swing-bys and the optimal path. Due to the complexity of the 
problem, systematic searches fail to provide solutions in a reasonable amount of 
time. Two stochastic approaches based on global optimisation are used, and their 
performances, in terms of speed, quality of the results and repeatability of the 
results, are proven through a set of test cases. These tools are intended to be used at 
the preliminary stage of the space mission design, when very little information 
usually is known about the transfer trajectory. 

The second objective is the search of families of optimal or quasi-optimal 
solutions, as opposed to what is pursued in a standard global optimisation problem, 
i.e. the global optimum. This second point is fulfilled, by the two proposed 
methods, in two different ways: in the two-level approach, the incremental pruning 
identifies and preserves families of feasible solutions in clusters, and prunes out the 
rest of the search space. In the integrated approach, lists are used to store feasible 
solutions and to avoid re-exploration of unfeasible paths. This is not the case for 
other optimisers, like PSO, GA or DE: although population-based optimisers return 
a great number of solutions, these could be in fact quite similar when the optimisers 
reach convergence. 

6.2.2 Other Major Achievements 
All the methods were tested on case studies inspired by real missions, and they were 
able to find and reproduce well known optimal solutions. The incremental approach 
in particular was applied to real mission transfer trajectories that were under study, 
and in all the cases was able to replicate the baseline solutions and in some cases 
found better solutions that could be considered. 

The incremental pruning is a tool that can be used at preliminary design stage, 
for assessing the transfer possibilities on a wide range of launch dates and 
parameters of the trajectory. However, it can be used also to investigate the solution 
space in the vicinity of a given solution, or for a limited set of launch dates and 
other trajectory parameters, for example when, at later design stage, a baseline 
mission is already identified, and backups are needed, or when some mission 
constraints are limiting the possibilities on the transfer trajectory. 

One of the advantages of the incremental pruning is that it uses a three-
dimensional trajectory model, including real planetary ephemerides, thus the 
phasing problem is solved exactly. The linked conic approximation demonstrated to 
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be very good for preliminary design stage, therefore the solutions obtained with the 
incremental process do not need to be further re-optimised. 

Appropriate objective functions and pruning criteria were investigated and 
designed for specific transfer cases: targeting a given orbit, reducing the v , as well 
as using resonant swing-bys. The test cases showed that the proposed criteria have 
general validity. 



The boxes identified by the incremental pruning resulted to be a small fraction 
of the whole search space; therefore any subsequent study can focus on these small 
areas, in which optimal solutions are likely to be found, with great saving of 
computational effort. It was also shown that the feasible sets can be used for further 
studies and deeper investigation into the problem. Moreover, the pruning process 
produces, as an output, a number of locally optimal solutions. 

The basic idea of discarding sets of solutions, based on some considerations on 
the problem, is somewhat similar to branch and bound techniques. In a classic 
branch and bound approach, only the best solution is to be found. Therefore, once a 
partial solution has an objective value that is higher than the one of the best full 
solution found so far, then that branch can be discarded. In a way, the pruning 
threshold is determined by the best solution so far. There are two issues in porting 
this methodology to the MGA problem. The first one is that the problem is not 
categorical, therefore it is not straightforward to define branches and to define upper 
and lower bounds for the objective function. The second major reason for which a 
branch and bound approach is not applicable is that we are interested in finding a 
wide set of feasible solutions, possibly including a high number of different mission 
options, and not only the global minimum. A classic branch and bound technique 
would discard a partial solution because it is slightly more expensive than the global 
best so far, but this solution could be interesting for a number of different reasons. 
The incremental pruning overcomes this limitation of the branch and bound 
approach through the clustering of feasible solutions and pruning the search space. 
Nonetheless, the incremental pruning finds a wide range of different solutions, as 
well as feasible sets, in which further investigation could be performed. 

The integrated approach offers a solution for preliminary assessment of 
possible sequences for a given launch date. Although the trajectory model is less 
detailed than other models used in two-level approaches, it includes the 
ephemerides of the planets, and thus the phasing problem is taken into account. As 
a result, the outcome of this tool is a trajectory that is very similar to those found 
with more detailed models, and so a good candidate as a first guess for subsequent 
optimisation with a full model. 

It is also important to underline that, despite this document presented the 
application to the interplanetary design problem, the original concepts and ideas 
behind the proposed approaches are independent from the specific application. The 
incremental pruning can be applied to the class of optimisation problems that can be 
decomposed into sub-problems, and through specific pruning criteria, tackled 
incrementally. The integrated approach based on ACO has applications on a 
number planning and scheduling problems: in particular, those the variants of the 
TSP in which the nodes are moving and the path cost depends on the whole history. 
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An example of these types of problems is the modified dynamic vehicle routing 
problem. 

6.3 Current Limitations and Future Research 

Despite the good results obtained with both the incremental approach and the ACO-
based approach, there are some limitations in the present implementation. Here they 
will be discussed for both approaches, and some solutions are proposed for future 
work. 

6.3.1 Incremental Pruning 
The major issue with the incremental pruning technique is the choice of pruning 
thresholds. The author is aware that setting the pruning threshold is a critical point 
for the incremental process: a high threshold results in a weak pruning of the 
solution space, and possibly in an exponential growth of the number of boxes. On 
the other hand, an aggressive pruning may end up in losing good solutions. The rule 
of thumb that was used throughout the work is to limit the deep space  to a level 
that is achievable by the engine. This is the most conservative choice, as it 
preserves all the solutions that can theoretically be exploited by the spacecraft. 
However, it requires having an estimation of the performances of the engine and an 
estimation of the spacecraft mass. If these data are not available, then a more 
conservative choice shall be used. It was verified that even a conservative choice 
implies the pruning of a great part of the solution space. This is due to very high 
gradients in the vicinity of the local minima, which are a feature of the MGA 
trajectories. On the other hand, research needs to be done for automatic selection of 
the pruning thresholds, and criteria in general: heuristic rules should take into 
account the characteristics of the spacecraft, when available; otherwise, reasonable 
conservative choices should be made. 

v

An area that was not deeply investigated in this research is an assessment of the 
optimisation methods to be used for identifying the feasible sets at each level. 
Although it was shown that a simple Multi-Start search within the incremental 
pruning can outperform other optimisers on the all-at-once problem, a deeper study 
can identify other optimisation techniques which are more efficient on this task. 
This could eventually further improve the performances of the incremental pruning. 

Another partly open point of the incremental approach is related to the tuning 
of the clustering techniques. The incremental approach utilised clustering 
techniques to generate boxes that identify the feasible set. All the clustering 
techniques that were investigated require (at least) one parameter that has to be 
tuned. For example, for the Mean Shift clustering method, the parameter is the 
bandwidth; in the other methods, the number of subdivisions for each variable, and 
so on. In the present implementation, these parameters are tuned a-priori, after a 
number of experiments. It is not excluded, though, that for some different transfers, 
a different setting is required. Heuristic rules can be implemented to tune the 
parameters to always obtain a satisfactory clustering of the solutions. 
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6.3.2 Integrated Approach 
The integrated approach presented in this work is based on a radically new concept, 
and therefore the research can continue in a number of directions, to better 
understand and improve the behaviour of the ACO-MGA algorithm. The author 
believes that there are great possibilities of improving the performances and the 
range of applications of this technique. 

At the time of writing this dissertation, several other test cases have been run 
(including part of the Laplace mission and interplanetary transfers to outer planets), 
to assess and compare ACO-MGA on a wider range of transfer problems. 

The current most important limitation is related to the search of the lists. In this 
search method, the lists are interrogated not only to generate the probability 
distribution, but also for another important reason. The taboo lists are accessed to 
avoid the exploration of paths that are already known to be unfeasible. 
Analogously, the feasible list is accessed to find the objective value of a previously 
explored solution. Both these accesses are performed instead of calling the 
trajectory model. In this sense, the lists can be considered a surrogate model of the 
trajectory itself. Therefore, a call to the lists saves a trajectory model evaluation. 
This idea applies not only to the MGA case under consideration, but in general to 
any problem tackled through the same approach. 

With the present implementation, in which the trajectory model is coded in C 
and compiled, and the lists are coded in MATLAB®, an access to a list can be more 
expensive than evaluating the model. However, it is expected that a C 
implementation of the lists would make their access faster than the model itself. 

In addition, in the present implementation, feasible and taboo lists are 
interrogated several times when ants have to build the probability distribution, at 
each step. It was discovered that the same probability distribution could be 
generated with a substantial reduction of the number of list interrogations. 

Other improvements are also possible. In fact, another reason for ACO-MGA 
to be computationally slow is the exploration of dead paths. This fact is observed 
when there are feasible partial solutions that lead to unfeasible ones only. With 
reference to Fig. 6.1, the partial solution [1, 1] does not appear in the taboo list at 
level 1, because it is feasible. But if an ant chooses that path, then all its branches 
are unfeasible. Therefore, the ant cannot explore anymore, as there is no possibility 
to reach any feasible solution starting with [1, 1]. Computational time has been 
wasted in two ways: first, it was not needed to explore the leg [1, 1]. Second, the ant 
had to go through all the possibilities at second leg, for realising that none is 
feasible. The proposed solution is the equivalent of the back pruning of the 
incremental approach: i.e. to update the taboo list at previous level (or previous 
levels) if at a certain point a dead end is found. 

In fact the back pruning could be more effective if performed across multiple 
levels. For example, the feasible partial solution [2, 2] could be added in the taboo 
list, even if not all its branches are unfeasible at the next level. Eventually, all its 
branches will become unfeasible before reaching the last level. 
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Fig. 6.1. Examples of dead paths in the ideal tree of solutions. 
 
On a longer time-scale, other improvements can be investigated. The current 

algorithm works only with fixed-length sequences. However, the number of planets 
involved in the transfer is not always an easy guess. The algorithm can be extended 
to look up for sequences up to a maximum length. This is quite straightforward, as 
the ants are building the solution leg by leg, and therefore they automatically assess 
shorter sequences. 

At present state, the launch date and launch direction are fixed. Despite, as it 
was pointed out, a systematic scan can be used along the launch date and the launch 
direction can be estimated depending on the sequence, the sensitivity on the launch 
direction can be quite high for some trajectories. Therefore, it could be worth 
investigating the optimisation of the launch direction inside the trajectory model, 
together with the excess velocity. This would result in additional cost in the 
objective function evaluation, but certainly more flexibility for the algorithm. 

Concerning the trajectory model used by ACO-MGA, it was explained that 
currently it is two-dimensional, impeding the use of the algorithm for a number of 
highly inclined targets. The third dimension could be introduced, avoiding the use 
of a Lambert solver and more parameters to describe the trajectory. One possible 
way is to keep the planar problem, but evaluate the cost of the plane change, in 
terms of , and include this cost in the objective. v

Finally, a completely unexplored field of research is the use of the proposed 
trajectory model, using building blocks, for trajectory design. In this prospective, 
the number of DSMs, the number and type of swing-bys, and the type of arcs could 
be found automatically through optimisation. The block model of the trajectory can 
be exploited in the following way: the optimiser would allocate the blocks meeting 
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the constraints at interfaces. Each model could implement different models for the 
same event, each one with different levels of complexity, and number of parameters 
required. A first step would allocate the blocks and evaluate the trajectory using the 
simpler models. A second step is called for solutions that are promising at first step, 
and will use the full models of each block. An integrated approach is also possible, 
based on nested loops. 
 





 

Appendix A    
 
 
IMPLEMENTATION DETAILS 

A.1 MATLAB® and C 

The incremental pruning is completely coded using MATLAB® (version 2007b was 
used on the Intel machine and version 2007a on the Sun machine). The trajectory 
model is almost completely coded in MATLAB®, except for the multi-revolution 
Lambert routine [96] and the analytical Keplerian propagator [94], which were 
coded in C and interfaced with the MATLAB® code as MEX-functions. These two 
routines are the called every time a trajectory has to be evaluated, and they are 
computationally expensive with respect to the rest of the model, and this is the 
reason which drove the porting into C. It was found (see Fig. A.1) that the 
execution of a MEX-function is roughly ten times faster than the corresponding 
MATLAB® version. The advantage of using FORTRAN with respect to C is 
negligible.  
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Fig. A.1. Time required for 20000 calls to the analytical Keplerian propagator, 

using MATLAB® code, MEX-function compiled from FORTRAN and 
MEX-function compiled from C. 
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A.2 Solution Refinement 

In this subsection, we investigate if some of the minima found by the optimiser 
actually belong to the same basin of attraction, and the optimiser failed to converge 
to the same exact point due to high tolerances on termination conditions, or the 
search space is truly multi-modal, and thus rich in distinct basins of attraction. 

To this aim, the solutions of the GCGC transfer case (see Section 4.2.2), which 
were found through a local optimiser using 610  as both absolute and relative 
tolerance, were re-optimised with higher tolerance of 1210 . As visible in Fig. A.2, 
which is comparing the two sets of solutions, most of the points moved on the left, 
finding a better value for the minimum, i.e. a better solution in terms of . The 
number of distinct solutions, instead, is roughly the same. We believe that the 
search space is dense in local minima, and this is one of the factors which make the 
MGA-DSM problem so difficult. It was already shown [

v

41] how the introduction of 
the DSM into ballistic trajectories dramatically increases the number of local 
minima. 
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Fig. A.2. GCGC solutions found using a tolerance (both relative and absolute) of 

10-6 (blue dots) and 10-12 (red dots). 
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MODELLING TRAJECTORIES 

WITH BUILDING BLOCKS 

In this appendix, a general trajectory model paradigm is proposed. The idea is to 
identify the basic events of a trajectory, and model them by using building blocks. 
Each block is connected to the following and preceding block through an interface, 
and the event itself is solved internally to the block. 

This approach is very general, and in principle any type of trajectory (as well as 
other planning problems) can be represented by defining the suitable blocks, 
interfaces and states. We will present a set of blocks for modelling high-thrust 
interplanetary trajectories with MGA and multiple DSMs. The actual model within 
each block will not be explained in detail, for two reasons: the first is that most of 
the models are either intuitive, or already been covered in the previous two sections. 
The second is that the functionalities of each individual block do not define the 
block approach as a whole.  

It will be shown that both velocity formulation (Section 2.2) and position 
formulation (Section 2.3) can be represented as special cases of the block-model. 

B.1 Model Description 

The main idea in this model is to identify the different events of the interplanetary 
transfer with blocks. Each block models a specific part of the trajectory. It can be an 
entire leg, or simply a coast arc, a swing-by, or any other event at any complexity 
level. The block can be seen as a black box, which contains the code for modelling 
the event, and interacts with other blocks only through an interface, states and 
parameters. A detailed description of the actual algorithm inside the blocks is 
beyond the scope of this section, and in fact it is not relevant for the proposed 
approach. Different blocks can also represent the same type of event, but using 
different models, or different algorithms: for example a powered swing-by or an 
unpowered swing-by. 
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A temporally ordered sequence of blocks defines a specific type of trajectory. 
Depending on the blocks, the trajectory can have one or more gravity assists, one or 
more DSMs, and so on. The order of the blocks reflects the temporal order of the 
events in the trajectory. Blocks in the sequence cannot be overlapped in time. 

All the blocks have a property, which is the duration: it represents the time that 
takes to complete the event modelled in the block. An additional attribute of any 
block is whether its duration is fixed, or it is a free design parameter of the block. 
As a particular case, a block may have null duration, i.e. the block is instantaneous. 

B.1.1 Interfaces 
Each block has 2 interfaces, to join the following block and the previous block in 
the temporal sequence. Each interface is intended to match the state of the 
spacecraft  (generally position and velocity) between 2 continuous blocks. The 
variables on the left hand side of the block refer to the spacecraft state before the 
event in the block. The variables on the right hand side interface correspond to the 
spacecraft state after the event. 

As an example, let us consider a block which is computing a coast arc through 
propagation of initial conditions. A block suitable for this task is shown in Fig. B.1. 
Its left hand side interface has got two variables – position vector and velocity 
vector – which are inputs to the block. The right hand side interface has got the 
same two variables, which are outputs. The block will compute the outputs once the 
inputs are given. The propagation time coincides with the duration of the block. 

In the following sections, a more detailed explanation of the elements and 
features of the block trajectory model will be given. 
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Fig. B.1. The Propagation block: given an initial position and velocity, propagates 

forward in time. The interface of this block on both sides includes the 
position vector and the velocity vector. 

B.1.2 Interface Types 
The interface type defines the variables which are used on the interfaces of that 
type. Therefore, all the interfaces of a particular type have the same variables. Note 
that the interface type does not specify whether a variable is an input or an output, 
but only which variables are on the interface. 

The interface type is a constraint when building a sequence of blocks: in fact, 
only blocks with the same type of interface can be adjacent in the sequence. In other 
words, the interface type must match for two blocks to be connected. Also, there is 
a constraint related to the input/output nature of each variable: this constraint will 
be described in a following section. 

Three types of interfaces will be used; they are represented in Fig. B.2. For 
more complicated trajectory models, other interface types could be necessary. 
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Interface type  has no variables, and it is used on the right side of a block 
which is a terminator of the trajectory or on the left hand side of block which is a 
starter for the trajectory. 

0I

Interface type  is used in the deep space flight, as in this phase the state of 
the spacecraft is considered to be fully characterised by its position vector  and 
velocity vector , and each deep space event somehow acts on these vectors. 

1I
r

v
Interface type  is used when the spacecraft position is supposed to be the 

same as a planet position. This is the case of a swing-by, for example. Since the 
heliocentric spacecraft position coincides with the planetary position, and the latter 
is known through the ephemeris, there is no need to include the position vector in 
the interface. 

2I

Considering again the propagation block of Fig. B.1 as an example, its 
interfaces are both of type . 1I

 

I

 
Fig. B.2. The types of interfaces used to model a trajectory. 

B.1.3 Interface Variables: Inputs and Outputs. Parameter 
of Merit 

Depending on the block, each variable on the interface can be an input or an output 
for that block. As pointed out already, in the propagation block shown in Fig. B.1, 
both position and velocity are inputs on the left hand side interface, while they are 
output on the right hand side one. This is directly related to the way the block 
models the event: in the case of the propagation, the initial position and velocity are 
required (i.e., before the block), while the result of the propagation is the final 
position and velocity (i.e. after the block). In the figures here, an input is shown 
with an arrow going into the block, while for the output the arrow is pointing 
outwards. Two blocks can be consecutive in a sequence if they have the same 
interface type and all the inputs on the interface of one block are outputs on the 
interface of the other block, and vice versa. When these conditions are satisfied for 
all the couples of continuous blocks, then the sequence is feasible. In the 
representation of the blocks in the figures of this document, the sequence is feasible 
if the arrows, representing inputs and outputs for each block, have the same 
direction on the two consecutive interfaces of adjacent blocks, as pictured in Fig. 
B.3. 

Additionally, a parameter of merit can be available as an additional output for 
the block. This is usually the magnitude of the v  required by the block, but in 
principle can be any other quantity which will be used to assess the complete 
trajectory. 

v

r
v

0  1I 2I
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For example, let us consider a block which is computing a Lambert arc (Fig. 
B.4). This block is a way of modelling a coast arc. Its duration is not fixed, and its 
interfaces may be defined with 2 quantities: the position of the spacecraft and its 
velocity. Therefore, we will use interface type  on both sides. Since to compute a 
Lambert arc, the initial and final position shall be given, then we can consider that 
the position on both the interfaces is an input of the block. In the same way, the 
result of computing the Lambert arc is the velocity vector at its extremes: so, the 
velocities are outputs of the block. Since the block models a coast arc, no propelled 
manoeuvre is involved, and thus there will be no parameter of merit. 

1I

 

 
Fig. B.3. An example of a feasible sequence of blocks with different types of 

interfaces. 

 
Fig. B.4. The Lambert block, modelling a Lambert arc. Given the initial and final 

position, computes the initial and final velocity. The time of flight, which is 
the duration of the block, is computed as a difference of the time state. 

B.1.4 Transparency to Variables 
Some variables on the interface of some blocks may not be required to evaluate the 
block, and the event in the block might have no effect on those variables, i.e. the 
value of those variables is the same before and after the block. In other words, these 
quantities are neither inputs nor outputs of the block, but they are on the interface. 
In this case, we say that the block is transparent to those interface variables. 

Let us consider for example a block which is modelling an (instantaneous) 
DSM. Since the block models a deep space flight event, the appropriate interface 
type for it is 1. The block computes the magnitude of the DSM once the velocity 
before and after the DSM are known: therefore, the velocity is an input on both 
interfaces of the block. On the other hand, the block does not explicitly need the 
spacecraft position, and the position does not change before or after the block. The 
block is transparent for the position, which is neither input nor output on the 
interfaces. The transparent variable is represented in the figures as a dashed line 
connecting the two interfaces (Fig. B.5). 

When a block is transparent with respect to a variable, for example r in the case 
of the block DSM represented in Fig. B.5, then this variable can be either input or 
output on the left, but must have opposite attribute on the right, in order to 
guarantee the feasibility of the sequence, as shown in Fig. B.6. 
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Fig. B.5. The DSM block, computing a deep space manoeuvre. The block is 

transparent to variable r. 
 

 
Fig. B.6. Two possible feasible sequences of blocks. 

B.1.5 Parameters 
A block may have a set of additional input variables, that we will call parameters, 
which are also needed to evaluate the block, but they do not belong to any of the 
interfaces. The reason for this distinction is that the parameters are not related with 
the spacecraft state at either side of the block, but they are more connected to the 
model inside the block itself. Examples of parameters are the launch excess velocity 
for a launch block, or the radius of pericentre and plane attitude angle for an 
unpowered swing-by. Note that the parameters could be fixed, or be part of the free 
design variables of the trajectory. 

Each parameter is represented with an arrow on the top of the block, pointing 
inside the block. 

B.1.6 States 
The states are additional variables defined at all the interfaces of the blocks in the 
sequence (Fig. B.7). The reasons for making a distinction between states and the 
interface variables are mainly two. First of all, the states can be computed in 
advance, for the entire trajectory, without evaluating any block. Second, the states 
are the same at all the interfaces, regardless the interface type. 

A particular state is the time: if the duration of the block is not fixed, then its 
duration is given by the difference of the time state at its interfaces. 

Table B.1 describes briefly the states defined for modelling an MGA trajectory 
in the following. For more complicated models, additional states may be required. 
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Fig. B.7. Sections at which the states shall be defined. 

 
Table B.1. States used to define a trajectory. 
State Description 
Time Epoch of the interface 
Previous planet Planet id of the last encountered planet 
Following planet Planet id of the next planet to be encountered 
Current planet Planet id, if the spacecraft is considered to be at a planet; 

0, if the spacecraft is in deep space flight.  

B.1.7 Block Set 
In order to model the entire trajectory using blocks, a set of blocks shall be defined, 
together with their interfaces. The interfaces shall be consistent one another, and 
reflect the input/output requirements of the block. 

Fig. B.8 shows the basic blocks, defined to reproduce the position formulation 
and the velocity formulation of the MGA trajectory. A brief description of the block 
functioning is also provided in the figure. 

 

 
Fig. B.8. Main blocks for modelling a high thrust MGA trajectory. 
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Launch. Fixes position and velocity after the block. It requires the launch excess velocity 
v0 as an additional parameter.

Propagation. Given both position and velocity before the block, it propagates the 
trajectory for a certain time to obtain position and velocity after the block. 

Lambert Arc. It requires the positions before and after the block, and computes the 
velocities. 

Brake. Fixes position (given by the planet ephemeris) before the block, and uses the 
velocity before the block to compute the brake manoeuvre. The brake Δv is  the parameter 
of merit.

Unpowered swing-by. Given the incoming velocity, it computes the outgoing velocity. It 
requires 2 additional parameters to determine the swing-by, γ and rp. 

Powered swing-by. It requires both the incoming and the outgoing velocity, and it 
performs a thrust manoeuvre to match the two legs. The parameter of merit is the Δv 
needed to perform the powered swing-by. 
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In principle, these blocks model all the events used in the velocity formulation 

and in the position formulation of the trajectory. Note that some blocks have 
incompatible interfaces: for example, two consecutive Lambert arcs are allowed in 
the position formulation of the interplanetary leg, but the two corresponding blocks 
cannot be put next to each other because the input/output configuration is 
incompatible (Fig. B.9). 

Two Lambert arcs should be divided by a DSM. Furthermore, the position of 
the DSM should be somehow specified. Therefore, the connector blocks shown in 
Fig. B.10 are introduced. They are represented with a gray box, to underline that 
they do not contain actual models of any part of the trajectory, but are meant to be 
connectors for the other blocks. 

Using the appropriate connector blocks, it is possible to connect two Lambert 
arcs as shown in Fig. B.11. 

 
 
 
 
 

Lambert

 
 
 
 

Lambert

 
Fig. B.9. Two Lambert arc blocks cannot match because of the inputs/outputs on 

their interface. 
 

 
Fig. B.10. Additional blocks for modelling a trajectory. 

 

 
Fig. B.11. Two Lambert arc blocks connected through a Fix position block and a 

DSM block. 
 
The input-output configuration on the interfaces of the Lambert arc block 

forces to add additional blocks to match 2 Lambert arcs. A block which fixes the 
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Fix position. Force the spacecraft to pass in a point by fixing the position before and after 
the block (as given by the external parameter). Transparent to velocity. 

Deep space manoeuvre. Computes the change in velocity. Transparent to position. 

Planet departure. Used when leaving a planet, it works as an interface between swing-by 
blocks and deep space flight blocks. Transparent to velocity, fixes the position after the 
block. 

Planet arrival. Used when arriving at planet, it works as an interface between deep space 
flight blocks and swing-by blocks. Transparent to velocity, fixes the position before the 
block. 
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position of the spacecraft (Fix position) and a block which introduces a 
discontinuity in the velocity (so a DSM, with related v  value). This configuration 
makes sense from a physical point of view. In fact, two matching Lambert arcs 
require the matching point to be given, and in the same point there must be a 
discontinuity in the velocity vector (see position formulation). Also note that the 
order of the two additional blocks used in Fig. B.11 is not important: inverting the 
two blocks generates the same feasible sequence. 

A set of ad-hoc rules was considered, such to insert the appropriate connector 
blocks in between the main blocks, to make a block sequence feasible, if possible. 
One example of these rules is the one given above: if two Lambert blocks are next 
each other, then a DSM and a Fix position blocks must be inserted. Another rule, 
inspired by the velocity formulation, implies that a Propagation block should be 
followed by a Lambert block 

B.2 Feasibility, Evaluability and Evaluation 
Order 

An ordered sequence of blocks is feasible if the interfaces of each couple of 
continuous blocks are of the same type, and each input parameter on one interface is 
an output in the other one, and vice versa. 

Once a sequence of blocks has been determined, the next step is to compute the 
trajectory associated to that block sequence, given its solution vector. The solution 
vector of a trajectory associated with a given sequence of blocks is made by all the 
parameters of the blocks, and all the necessary time states. 

The entire trajectory is evaluated by evaluating all the blocks in the sequence. 
Evaluating a block means to run the model inside, such that it computes the output 
interface variables, and the parameter of merit, if available. The feasibility of a 
given sequence does not guarantee that all its blocks can be evaluated. To be 
evaluated, a block needs to be provided with all its input interface variables, the 
states before and after the block, and the parameters. As it was mentioned before, 
the states can be computed independently of all the blocks, and the parameters of 
the blocks are in the solution vector: thus they are available. The same cannot be 
said for the interface variables: their value can only be found by evaluating the 
other blocks in the sequence. 

So there is a constraint which forbids to evaluate the sequence of blocks in 
temporal order: the fact that a block needs all the input variables on both interfaces 
to be known, to be evaluated. It follows that there shall be a particular order for 
evaluating the blocks, such that every time the input interface variables for the next 
block to be evaluated are available. 

In general we can say that a feasible sequence of blocks is evaluable if there 
exists an order in which the blocks can be evaluated, one after the other. This order 
will be called evaluation order, and it is often different than the temporal order of 
the blocks in the sequence. 
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Let us consider as an example the block sequence in Fig. B.7. This sequence is 
temporarily ordered, in the sense that the events represented by each block happen 
with the same temporal order of the blocks in the sequence. The sequence is clearly 
feasible. 

Its evaluation makes r and v available at section 1. r and v at the same section 
are inputs for the Propagation block, which can in turn be computed, giving r and v 
at section 2. The following block, DSM, cannot be evaluated, as the input v at its 
right hand side (section 3) is unknown. Note that, as the DSM block is transparent 
with respect to r, the value of this variable is known also in section 3: it is the same 
as in section 2. The block Lambert cannot be evaluated either, but it is possible to 
evaluate Planet arrival, since it has no input interface variables. This completes the 
Lambert inputs, which in turn completes the DSM inputs. Following these criteria, 
it results that one possible evaluation order of the sequence is: 

 
Launch → Propagation → Planet arrival → Lambert → DSM 

 
The evaluation order can be represented graphically as in Fig. B.12 considering 

to have an imaginary horizontal axis of the evaluation order: so the blocks are 
actually evaluated from left to right in the figure. 

An algorithm has been developed to find for any sequence of blocks, if 
possible, their evaluation order. 

 

 
Fig. B.12. Blocks for the sequence in Fig. B.7 positioned along a horizontal axis 

according to their evaluation order. 

B.3 Reproducing Other Models 

B.3.1 Velocity Formulation 
The velocity formulation model can be reproduced using some of the blocks 
represented in Fig. B.8 and Fig. B.10. A partial temporal sequence of blocks is 
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represented in Fig. B.13. The sequence can continue with an arbitrary number of 
blocks following the same scheme, and depending on the number of legs to 
consider, and eventually ends with a Brake block. The sequence is evaluable, and 
its evaluation order is represented in Fig. B.14. 

 

 
Fig. B.13. Temporal sequence of blocks reproducing a trajectory according to the 

velocity formulation. 
 

 
Fig. B.14. Blocks for the sequence in Fig. B.13 positioned according to their 

evaluation order. 

B.3.2 Position Formulation 
The position formulation of the trajectory can also be reproduced using the block 
model. In particular, one deep space flight leg is represented in Fig. B.15. 
Additional Fix position, Lambert arc and DSM blocks can be added. 

The swing-by phase of the position formulation is modelled using the powered 
swing-by block, which is between the Planet arrival block and the Planet departure 
blocks (Fig. B.16). The Powered swing-by block can be evaluated when the 
following and the preceding deep space phases are computed. This reflects the same 
approach used in the position formulation. 

The sequence, regardless the number of DSM and Lambert arc blocks, can be 
evaluated in the order represented in Fig. B.17. 

 

 
 

Propa-
gation 

r 

vv 

r

 

Planet 
arrival 

r 

v v 

 
 
 
 

Lambert

r

vv

r
 

Planet 
departure 

v v

r 
 
 

Propa-
gation 

r 

v v 

r 

 
 
 
 

DSM 

r

vv

r

Δv

Evaluation order 

 
 

Unpow 
swingby

vv

rp     γ  
Launch 

v 

r v0 

 
 

Propa-
gation 

r

v v

r 
 

Planet 
departure

vv

r
 

Planet 
arrival 

r

vv

 
 
 
 

Lambert

r 

vv

r
 
 

Propa-
gation 

r 

vv 

r
 
 
 
 

DSM 

r 

v v 

r 

Δv 

 
Launch 

 
 

Unpow 
swingby

rp     γ 

v 

r v0 

vv



B.4 Discussion 235 
 

 
Fig. B.15. Sequence for a deep space flight phase of the position formulation. 

 

 
Fig. B.16. Sequence for the swing-by phase according to the position formulation. 

 

 
Fig. B.17. Blocks sorted according to the evaluation order for the deep space flight 

leg of the position formulation. 

B.4 Discussion 

B.4.1 Incremental Approach 
It was shown that every evaluable sequence of blocks can be reordered in the 
evaluation order. This means that the sequence of blocks can be evaluated 
incrementally, one after the other. Blocks having a parameter of merit determine the 
cost of the trajectory up to that point. Moreover, it was explained how to reproduce 
the position formulation and the velocity formulation with the block approach, and 
how to generate their evaluation order. Consequently, we can conclude that both the 
position formulation and the velocity formulation of the trajectory can be solved 
incrementally, by adding one set of blocks to the trajectory at a time. In Chapter 3, 
an incremental approach to the MGA trajectory design problem is shown. Even if 
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the velocity formulation is be used, the same ideas can be applied to the position 
formulation or in principle to any trajectory generated by an evaluable sequence of 
blocks. 

B.4.2 Different Levels of Accuracy and Detail 
An interesting feature of the block-model is that the fidelity of the representation of 
the trajectory can be improved without changing the block structure. In fact, 
different blocks can be used to model the same event with different levels of 
accuracy. As an example, let us consider the Lambert arc block. Solving the 
Lambert problem is known to be computationally expensive with respect, for 
example, to a propagation. So a very quick (but less precise) Lambert solver can be 
used in the first place, for a fast assessment of the trajectory. Then, in a second 
time, a more accurate Lambert solution can be plugged into the same block without 
modifying the overall structure. 

The block model allows also for a hierarchical construction of the trajectory.  A 
first coarse solution can be built with few blocks modelling large sections of the 
trajectory (possibly using reduced or simplified models). A second solution is then 
computed using sub-blocks of the coarse solution modelling smaller events with 
higher accuracy. 

For example, it could be possible to define a block which is coding an entire 
interplanetary leg, providing a rough estimation of the necessary v , possibly using 
some heuristic rules. In a second time, a more accurate trajectory can be computed 
by un-plugging the block, and inserting a number of Lambert arcs, low-thrust arcs, 
propagation arcs, and DSMs. 

B.4.3 Automatic Trajectory Planning 
A further interesting feature offered by the block model is the automatic planning of 
complex trajectories. By planning we mean the process of finding the best temporal 
sequence of blocks to achieve a certain mission goal. 

A sequence of blocks can be easily coded in a vector of discrete variables, in 
which the value of each entry represents a block in the sequence. Then, an 
optimisation algorithm for discrete problems can be used to find an optimal block 
sequence. This concept is expanded in Chapter 5, where a particular planning and 
scheduling approach will be presented. 

 



 

Appendix C    
 
 
AFFINE TRANSFORMATION 

While the pruning process reduces the volume of the search space, the resulting 
residual space is not necessarily box-constrained. If one of the clustering and 
boxing techniques is applied (for example those in Section 3.4.2), then the residual 
space can be represented as a set of boxes, defined on each level ,L iD  or on the 

whole domain up to the level . Nevertheless, the resulting space remains in 
general disconnected. 

iD
Fig. C.1 shows examples of disconnected and/or overlapped 

boxes for a two-dimensional and a three-dimensional case. 
An additional problem is that the number of boxes could grow exponentially, 

and so would the number of subsequent optimisations, if an optimisation for each 
box is considered. 

On the other hand, the pruning is advantageous only if the search, at the 
following level, is limited on the non-pruned part of the space, and no effort is made 
to search on the residual part. Therefore, it is essential to search only on the non 
pruned part of the domain. 

 

 

 (a) Two dimensions (b) Three dimensions 

Fig. C.1. Two examples of domains defined as a set of boxes. The boxes can be 
partially or completely overlapped. 
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C.1 Affine Transformation 

A possible solution is to collect all the boxes at each level, such to pack them in 
a way that they fill a transformed box-constrained search space. The search is then 
performed on this transformed space, rather than on each box individually. 

In order to pack all the (disconnected) boxes generated at each level i, a space 
transformation is applied that maps all the boxes into a unit hypercube made of 
connected boxes. If level i is under pruning, then a transformed space is generated 
for each level k i . 

The dimensionality of the transformed space is the same as the one of the 
original level space, so is the number of partitions in the unit hypercube. Each box 
in the real space has a corresponding partition in the transformed space, and a linear 
transformation allows mapping a point  inside a box in the transformed space 

into a point  in the corresponding box in the real space: 
,L ix

,L ix

 
 
   , , , , , ,

, , , , , , , , , ,

, , , , , ,

u L i j l L i j

L i j L i j l L i j u L i j

u L i j l L i j

b b
x x b

b b


 


 b  (C.1) 

for each dimension j of the level i under consideration.  are the upper and 

the lower bounds of the box in the unit hypercube which contains , and 

 are the bounds of the corresponding box in the real space. 

, , , ,,u L i l L ib b 

,L ix

, , , ,,u L i l L ib b

Using this transformation of the search space, it is possible to run the search for 
feasible solutions on the unit hypercube, as schematised in Fig. C.2. The affine 
transformation is bi-univocal, thus it allows obtaining the point in the real space 
given a point in the unit hypercube, and evaluating the objective function in that 
point. In such a way, the optimisation problem becomes box constrained, and a 
generic optimiser can be used to search the space. 

It is also to be noted that the affine space contains all and only the boxes on 
which the function is defined: thus, only those parts of the search space which have 
not been pruned out are included in the search. 

In general, there exist infinite ways to partition the unit hypercube in a given 
number of boxes: some examples are shown in Fig. C.3 for a two-dimensional 
space. Each of those may have different properties and drawbacks. In this work, 
two methods have been studied and used, each one trying to pursue a certain 
property. 
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Fig. C.2. On the left, steps to search on the affine space. On the right, the wrapped 

objective function used to search on the affine space. 
 

 
Fig. C.3. Three different ways to partition the affine space for a required number of 

boxes from 1 to 16. 

C.1.1 Method 1 
The first method aims at partitioning the unit hyper-cube in a way that most of the 
boxes have the same shape (and thus the same volume). The idea is that, if the 
boxes have the same volume and the same edges, the probability of sampling each 

box of the space is uniform. Being ,L iD  the number of dimensions of the generic 

level i, and  the number of boxes on that level, it is possible to meet these two 
requirements together only if: 

iq

 ,L iD
ip q  

is an integer. p is the number of intervals to consider on each dimension to partition 
the affine space into  hyper-cubes. In all the other cases, it is still possible to have 
boxes of equal size (for example cutting the hypercube along only one coordinate), 
but the number of subdivisions per coordinate would be uneven. This means that 

iq
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the objective function will be more sensitive to any change of that coordinate along 
with the cuts have been made. This situation is undesirable for any optimiser. 

Algorithm C.1 was developed to try to keep the boxes similar one another in 
dimensions, and at the same time, with similar edge length. The pseudo-code is 
processing each dimension at a time, and determines jp , which is the number of 

subdivisions along the jth dimension.  is a variable to keep track of the number 

of remaining boxes to generate, once a dimension has been processed. At the end of 
the algorithm, if , then the regular subdivisions could not generate all the 

required boxes, so further boxes (which will be different in size) are generated by 
halving existing boxes. 

leftq

0leftq 

Fig. C.4 shows the partitioned unit hypercube, for a number of partitions from 
1 to 12: (a) is the case of a two-dimensional space, while (b) is for a three-
dimensional space. The algorithm works in the same way for an arbitrary number of 
dimensions. This method provides regular boxes in most of the cases: uneven 
partitioning is noticeable for 3, 6, 8, 12, 15 boxes. However, the generation of boxes 
in the real space is arbitrary therefore it is always possible to generate the optimal 
number of boxes. 

It is noteworthy that, in order to partition the unit hypercube with this 
algorithm, no information about the size of the boxes in the real space is required. 

 
Algorithm C.1. Generation of the affine space according to method 1. 

 1:  Lq q   

 2:  For , ,, 1,...,1L i L ij D D   

 3:    floor j
j leftp q  

 4:   left
left

j

q
q

p
  

 5:  End For 
 

 

 (a) 2D case (b) 3D case 

Fig. C.4. Partitioning of the unit hyper-cube for different numbers of partitions 
(from 1 to 12), and in the 2D case (a) and in the 3D case (b), using method 
1. 
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C.1.2 Method 2 
The second method for partitioning the unit hypercube aims at preserving the 
mutual proportions of the volume among the boxes. In this case, in addition to the 
number of boxes, it is necessary to compute the volume of each box in the real 
space, relative to the total volume of all the boxes. Called the relative volume  for 
a generic box i, this must be actual volume of the corresponding box in the unit 
hypercube, as the total volume of the unit hypercube is unitary by definition. After 
having sorted the boxes by their volume, in decreasing order, an iterative procedure 
is initiated. Starting with the first box, one coordinate of the affine space is cut such 
that the volume of one the resulting two boxes is . Then the second box is 
considered in the sorted list and the same procedure is applied to the other box of 
the affine space. The iterative bisection process continues until all the boxes have 
been processed. At each iteration, the cut is performed cyclically on each 
coordinate. 

iV

1V

The choice of maintaining the volume ratio is made to preserve the sampling 
probability of the original space ,L iD , when a uniform sampling is performed. Note 

that this algorithm is partitioning the unit hypercube maintaining the mutual 
proportions among the volumes, but not among the length of the edges. A two-
dimension example of the space partitioning is shown in Fig. C.5. 
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 (a) Real space (b) Affine space 

Fig. C.5. An example of partitioning the unit hyper-cube using method 2: (a) the 
real space; (b) the affine space, partitioned accordingly. 

C.2 Discussion 

The value of the pruning function if  at level i is then evaluated by sampling the 
affine space for levels 1  and then mapping the sampled points into the real 
space. 

,...,i

The creation of the affine space (and the search on it) is a solution to the 
problem of optimising a function defined on a set of boxes on various levels, 
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avoiding the exponential growth of the number of optimisations with the number of 
levels, if a different search for box is considered. 

The alternative to the space transformation is to run several searches on each 
box independently, each one of those being box constrained, and then merge the 
results. If there is only one level, the two methods are quite similar. If there are q 
boxes, it is possible to run either q optimisations, each one using a different box as 
boundary, or only one on the affine space. Since the affine space maps to all the 
boxes, a better search is needed in order to obtain solutions of the same quality as 
before. If we assume that the optimiser is distributing some agents in the search 
space, with a given density with respect to the characteristics of the function, the 
total number of agents used in the q optimisations on the boxes separately should be 
similar to the number of agents used to optimise the affine space once. 

Now let consider that there are two levels, with dimensionality  and , with 

 and  boxes respectively, defined on their respective levels. If we want to 
search on each separate box-constrained region (i.e. without using the affine 
transformation), we need to run one search for each possible pair of boxes from 
level 1 and 2. This means that we need 

1n 2n

1q 2q

1 2q q  optimisations, each one on a space 

with  dimensions. For a general problem with  levels, the optimisations 

needed are . 

1n  2

2

n
n

i

legsn

1

legs

iq



Using the affine transformation for each level, the affine space will have 
 dimensions, and only one optimisation is needed. Of course, even if the 

dimensionality of the optimisation is the same as in the case of optimising one set of 
boxes, many more agents are needed here in order to guarantee the same quality of 
search. This is due to the fact that the affine space is built by joining all the boxes 
for each level. In spite of this, there might be an advantage by using the affine 
space. In fact, in this case, the optimiser is free to move in the entire affine space, 
which is the same as moving in all the boxes. The optimiser does not see the box 
partitioning of the affine space. So the optimiser can choose the best combinations 
of boxes for each level just by moving in the affine space. 

1n n

However, it should be noted that the objective function seen from the affine 
space is discontinuous even if it is continuous in the real space (Fig. C.6). This is 
due to the way the space has been created: it is composed by disconnected and/or 
overlapped boxes in the real space. This makes the use of gradient-based techniques 
in particular quite tricky. 

The discontinuities of the objective function depend on how the boxes are 
connected in the affine space. However, if the boxes are disconnected or overlapped 
in the real space, the objective function in the affine space results to be always 
discontinuous. In addition the number of local minima in the affine space may be 
greater than in the real space. Although this might seem a pitfall, it should be noted 
that in practice a good deal of the minima in the affine space are replica of 
individual minima in the real space. As a consequence there is an increased 
probability to find a good solution. 
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 (a) Real space (b) Affine space 

Fig. C.6. In (a), a paraboloid defined on a set of boxes, and in (b), the corresponding 
function in the affine space. 

 
The idea of generating the boxes by merging together all the regions with 

feasible points within one single enveloping box (by using method 3 or 4) has the 
advantage that the local structures of the objective function are preserved through 
the affine transformation in the transformed space, ensuring that every box tries to 
identify a particular region of interest, and no regions of interest are split among 
different boxes. 

C.3 Test Cases 

The following subsections present two additional test cases using the affine 
transformation. They exploit boxing method 3 (refer to Section 3.4.2). 

C.3.1 Sequence EEM 
This test case is very similar to the one presented in Section 3.6.2 (to which we 
refer for a complete description of the problem), but the objective function is 
modified to include a final orbit insertion manoeuvre1. Therefore, the function f is 
the sum of the v  of the two DSMs, plus the fv  needed to inject the spacecraft 

into an ideal operative orbit around Mars with 3950 km of pericentre radius and 
0.98 of eccentricity [104]. The bounds are the same as those presented in Table 
3.10. 

The incremental pruning was run with 30 randomly distributed starting points 
for level 1 and 20 for level 2. The threshold for 1 1f v   at level 1 was set to 0.5 
km/s, and the Multi-Start optimiser was stopped as soon as a solution reaches this 

                                                      
1 This test case was run during an ARIADNA study in collaboration with ESA-ACT and the 
University of Reading. The objective function was modified on explicit request by ESA for 
sake of comparison with other approaches. 
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value. Due to the different method for generating boxes, the size of the edges at 
level 1 for each variable was set to the values represented in Table C.1. 

The result of the pruning of level 1 is shown in Fig. C.7 and Fig. C.8, which 
represent the projection of the boxes along variables of level 1. The red dots 
represent the solutions found by the Multi-Start optimisation at level 1. All the 
search space which is not included in one of the boxes is pruned out, and not 
considered during the search at the following level. 

 
Table C.1. Box size for the EEM test case. 

Variable Box edge 

0t , d Whole domain 

 , rad 0.1429 

 , rad 0.1429 

1  0.2967 

1T , d 95 d 
 

4000 5000 6000 7000 8000 9000
t
0
, d, MJD2000

 
Fig. C.7. Projection on t0 of boxes and solutions after pruning level 1. 

 

 

 (a) Projection on δ, θ (b) Projection on T1, α1 

Fig. C.8. Boxes and solutions after pruning level 1. 
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The fact that  is not relevant is clear from 0t Fig. C.7, as the solutions are spread 
along the whole time span. Instead, the pruning process reduces the search space 
along the other variables considerably, in particular  ,   and . 1T Fig. C.8 (a) 

reveals that all the solutions have the non-dimensional declination   at 0.5, which 
means that the launch must be in the Earth orbit plane, and non-dimensional 
declination   equal to 0, 0.5, or 1: these values correspond to a launch excess 
velocity aligned with Earth orbital velocity (with the same or the opposite 
direction). Considering the time of flight , there are 4 classes of solutions, around 
365 d, 510 d, 720 d and 900 d. These local minima have been clustered in 3 boxes, 
as seen in 

1T

Fig. C.8 (b). 
The following step of the incremental algorithm is the process of level 2. Since 

level 2 is the last one in this problem, its pruning is not necessary. All the solutions 
found by the Multi-Start optimisation are sorted and the best one is considered the 
best global minimum. The search for the solutions at level 2 takes advantage of the 
pruning at level 1, and exploits the space transformation. 

The smallest  found by the incremental approach, averaged on the 20 runs, 
is shown in 

v
Table C.2, together with the same value obtained by running 

Differential Evolution, Particle Swarm Optimization and the Multi-Start on the 
complete problem all-at-once. The number of objective function evaluations is also 
shown, as a parameter of the computational power required to obtain a certain 
objective value, and thus as an index of the performance of the optimiser. For the 
incremental approach, the number of function evaluations for each level is shown. 
The standard deviation of the best-found objective value on the 20 runs is also 
shown. 

The result is that the incremental algorithm finds solutions with a lower  
than DE, PSO and the Multi-Start optimisation, with about 1/10 of the function 
evaluations.  

v

The trajectory corresponding to the best solution found by the incremental 
approach is represented in Fig. C.9. 

 
Table C.2. EEM results for 4 different approaches, values computed on 20 runs. 

Best v  [km/s] 
Optimiser 

Average no. of 
function 

evaluations Average Standard deviation 

DE all-at-once 200070 1.591 0.136 

PSO all-at-once 200000 1.556 0.238 

Multi-Start all-at-once 210217 1.268 0.137 

Incremental 6097, 18519 1.171 0.081 
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Fig. C.9. Projection on the ecliptic plane of the best solution found by the 

incremental algorithm. The total Δv is 1.08 km/s, including the final orbit 
insertion manoeuvre. 

C.3.2 Sequence EEVVMe 
This sequence to reach Mercury includes three swing-bys, 2 of which are resonant. 
It is the same sequence chosen for the MESSENGER mission [25]. 

The launch excess velocity was fixed to 1.5 km/s, and no orbit insertion 
manoeuvre was considered at Mercury, because other resonant swing-bys may be 
added to further slow down the spacecraft. The objective function is then the sum of 
the DSMs in each leg. The bounds for this problem are shown in Table C.3. 

The 4th leg was required to perform 6 revolutions around the Sun. To this aim, 
the bounds on 4  were restricted such that the propagated part of the leg can 
perform at least 3 complete revolutions, while the subsequent Lambert problem is 
solved searching for a 2-complete-revolution solution. 

For the incremental approach, 100, 100, 100, 200 starting points for levels 1 to 
4 respectively were used. The size of the boxes for level 1 was set to a fraction of 
the span of the space (apart from ), as shown in 0t Table C.4. At the pruning of level 
2, the back pruning was used, and the boxes were re-generated also at level 1, with 
the size associated to variable  reduced to 1/10 of the original size. The reason is 
that the E-V leg introduces some constraints on the phasing of the Earth-Venus 
system, and this reduces dramatically the range of the possible launch dates, in 
order to have a low . For the variables of the levels 2 to 4, the size of the boxes 
was kept fixed, as in 

0t

v
Table C.4. 
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Table C.3. Bounds for the EEVVMe test case. 
Variable Lower bound Upper bound Level 

0t , d, MJD2000 4500 5500 

  0 1 

  0 1 

1  0.2 0.9 

1T , d 350 600 

1 

1 , rad     

,1pr , planet radii 1 5 

2  0.01 0.99 

2T , d 300 450 

2 

2 , rad     

,2pr , planet radii 1 5 

3  0.01 0.99 

3T , d 150 300 

3 

3 , rad     

,3pr , planet radii 1 5 

4  0 0  
, d 750 850 

.595 .733

4T

4 

 
Tab ze f M

Level under 
pruning a

Box edges at 
level 2 

Box edges at 
level 3 

Box edges at 
level 4 

le C.4. Box si or the EEVV

Box edges 

e test case. 

t level 1 

1 

: whole 0t

 : 0.2 
 : 0.2 

1 : 0.2333 
   

1 : 50 d T

2…4 

 0t : 100 d

 : 0.2 
 : 0.2 

1

1 :

: 0.2333 

1T : 50 d 

 1  .25 rad

,1pr : 1.33 

2 : 0.29 

: 30 d 2T

2 : 1  .25 rad

,2pr : 1.33 

3 : 0.29 

: 30 d 3T

3 : 1  .25 rad

,3pr : 1.33 

4 : 0.046 

: 20 d 4T

 
The objective function in Eq. (3.17) was chosen for searching the solutions on 

level 1 and 3 of the incremental approach. These levels correspond to the resonant 
swing-by legs E-E and V-V respectively. For levels 2 and 4, the sum of the  was v
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chos

f some  

en. Local minima above 1, 1.1, 1.2 km/s were discarded at levels 1, 2, 3 
respectively. 

As in the EEM case, the pruning of level 1 does not identify any particular 
launch window, even i  periodicity is visible due to the eccentricity of the 
Earth orbit (Fig. C.10). As seen in Fig. C.11, the incremental algorithm clearly 
identifies an in-plane ( 0.5  ), tangential ( 0, 0.5,1 ) launch direction; 
Furthermore, there are three classes of solutions with 3 possible times of flight T , 

clustered into 2 sets of boxes. The solutions are spread in a wide range on 1

1

 . 

The search at level 2 reveals that the solutions are no more spread along 0t  
(Fig. C.12): thus, the reduced size of the boxes allows identifying a few launch 
windows, between 4900 and 5200 MJD2000 in particular. This result was expected 
and justifies the choice for a smaller box size along 0t  after level 1. In 

 

be
g the  o e Earth swing-by shows that 

the ideal Earth swing-by angle 

Fig. C.13 (a) 

and b, it is noticeable that the time of flight 2T  for the E-V leg should  around 
430 d. The projection of the boxes alon axes f th

1  is around 0. No pruning is done on , as the ,1pr

solutions are spread in the whole span. 
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F Projection on t  of boxes and solutions after pruning level 1. ig. C.10. 0

 

 

 (a) Projection on θ, δ (b) Projection on α1, T1 

Fig. C.11. Boxes and solutions after pruning level 1. 
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le C.5. EEVVMe results for 4 different approaches, values computed on 20 runs. 

Best v  [km/s] 
Optimiser 

Avg. no.  
obj. fun. eval.

Time for 
obj. fun. Std.  
eval. [s] Avg. 

dev. 

DE all-at-once 400010 5842 8.456 0.444 

PSO all-at-once 460000 6900 6.094 0.920 

Multi-Start all-at-once 427499 6412 4.599 0.865 

Incremental 
24397, 96674, 

184340, 154754 
3625 3.89 0.739 

 
The incremental approach proceeds in the same way up to level 4. At this point, 

the near-global optima are found. Table C.5 shows the comparison of the 
incremental approach with the two all-at-once approaches, in terms of objective 
function and number of function evaluations. 
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n evaluations. Nevertheless, it has to be 
considered that all the all-at-once approaches evaluate the objective function for the 

at level 4. The partial objective functions at lower levels are cheaper to compute, as 
they includ egs and o-revolut  Lambert problems, which are quicker to 
solve than -revolut n one at leg 4. Times for one function evaluation on 
an Intel Pentium 4 3 GHz are reported in Table C.6. The result is that the total time 
spent in evaluating the objective function is far lower for the incremental approach 

bette  trajec
ig. C.13 plots the projection of the best trajectory found by the incremental 

algorithm during one of the 20 runs. The total 

For this test case, the incremental algorithm outperforms all the other methods, 
using about the same number of functio

complete problem every time, while the incremental is evaluating that function only 

e less l zer ion
the multi io

than for the others. At the same time the incremental approach was able to identify 
tories. r

F
v  is 4.55 km/s with a relative 

velocity at Mercury of 8.2 km/s. Note that the reason why the relative velocity at 
Mercury is so high is that it was not included in any pruning criterion or in the 
objective function of the whole problem. 

 
Table C.6. Average time to evaluate the partial objective functions, for each level, in 

seconds. 
Level 1 2 3 4 
Time, s 31.8 10  33.5 10  35.0 10  21.5 10  
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Fig. C.14. Projection on the ecliptic plane of the best solution found by the 

incremental algorithm. 
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TESTING PROCEDURE FOR 

GLOBAL OPTIMISATION 

ALGORITHMS 

If we call A a generic solution algorithm and p a generic problem, we can define the 
procedure in Algorithm D.1.  

Now and in the following we say that an algorithm A is globally convergent, 
when for a number of function evaluations N that goes to infinity the two functions 

min  and max  converge to the same value, which is the global minimum value 

denoted as globalf . An algorithm A is simply convergent, instead, if for N that goes 

to infinity the two unctio min f ns   and max  converge to the same value, which is not 
necessarily a global or a local minimum for f. 

If we fix a tolerance value ftol , we could consider the following random 

variable as a possible quality measure of a globally convergent algorithm: 

   * min : ,max global fN N N f tol N     N  . (D.1) 

 
Algori hm .t  D 1. Convergence test. 

nction evaluations for A equal to N  1: Set the max number of fu
 2: Appl  A to y p for n times 
 3: For 1,...  , Do ,i n

 4:      , min , ,N i f A N p  i

 5: End For 
ute  

 
   

 
 

1,..., 1,...,
min , ; max ,min max

i n i n
N N i N N i  

 
    6: Comp 
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Fig. D.1. Convergence profile for a bi-impulsive Earth-Apophis transfer. 
(a) Convergence as a function of the number of function evaluations; 
(b) Convergence as a function of the number of initial samples for a Multi-
Start algorithm. 

 
The larger (the expected value of) N   is, the slower is the global convergence 

of A. Fig. D.1 (a) and (b) show the convergence profile for the bi-impulsive 
problem obtained with 50 repeated independent runs of a Multi-Start algorithm: a 
number of samples were generated in the solution space with a Latin hypercube 
sampling procedure and a local optimisation was run from each sample. Slightly 
more than 1000 initial samples are required to have a 100% convergence to the 
global minimum. However, the procedure in Algorithm D.1 can be impractical 
since, although finite, the number N   could be very large. In practice, what we 
would like is not to choose N large enough so that a success is always guaranteed, 
but rather, for a fixed N value, we would like to maximize the probability of hitting 
a global minimiser. Now, let us define the following quantities: 

      ;f global x globalf f    x x x x x . (D.2) 

In case there is more than one global minimum point,  x x  denotes the 

minimum distance between x and all global minima. Moreover, in case the global 
minim oint globalx  is not known, we can substitute it with the best known point 

x

um p

best . We can now define a new procedure, summarised in Algorithm D.2. 
A key point is setting properly the value of n. In fact, a value of n too small 

would correspond to an insufficient number of samples to have proper statistics. 
The number n is problem dependent and is related to the complexity of the problem 
and to the heuristics implemented in the solution algorithm. A proper value for n 
should give a little or null fluctuations on the value of sj n , i.e. by increasing n the 

value of sj n  should remain constant or should have a small variation. Note that 

the values of the tolerance parameter ftol  and xtol  depend on the problem at hand. 

Algorithm D.2 is applicable to general problems either presenting a single solution 
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with value function globalf  (or bestf ) or presenting multiple solutions with value 

globalf  (or bestf ). On the other hand, in the following we are not interested in 

distinguishing between solutions with equal f and different x therefore we will use a 
reduced version of Algorithm D.2 in which the condition  x xtol x  is not 

considered.  
Finally, we remark that the two procedures described in Algorithm D.1 and 

Algorithm D.2 only consider the computational cost to evaluate f but not the 
intrinsic computational cost of A. The intrinsic cost of A is related to its complexity 
and to the number of pieces of information A is handling. For instance, for a simple 
grid search such intrinsic cost is represented by the cost of sweeping through all the 
N points on the grid at which the objective function is evaluated. The intrinsic cost 
varies from algorithm to algorithm, but here we are assuming that the computational 
effort of the algorithms is dominated by function evaluations and, therefore, we do 
not take intrinsic costs into account. Note that if the algorithm A is deterministic, 
then we can set 1n  . Indeed, each time A is applied to p, it always returns the 
same value. Then, for deterministic algorithms, given a value N, a reasonable 
performance index is simply    ,1dJ N N , i.e. the best value returned by the 

algorithm

a suffi
 

Algori

. ed algorithms 
ing an algorith

ie

o  to t al optimum. 
nction evaluations for A

 Instead, for stochastic bas

ergence

different performance indexes 
m over a problem 

 equal to N  

can be defined. Such indexes are computed by runn
c ntly high number n of times. 

thm D.2. C nv he glob
f fu 1: Set the max number o

 A to p for n tim 2: Apply es 
 3: Set sj  0  

 4: For  1,...,i n , Do  

 5:      , min , ,N i  f A N p  i

 6:   arg ,n ix  

 7:  Comput  xe f  and  x x  

 8:  If f f x xtol tol    Then 

 9:   1s sj j   
 10:  End If 
 11: End For 

 
Commonly used indexes are the best, the mean and the variance of all the 

results returned by the n runs, or the probability of success of a single run. 
However, the use of best value, mean and variance present some difficulties. In fact, 
the distribution of the best values is not Gaussian. Therefore, the distance between 
the best and the mean values, or the value of the variance in general, does not give 
an exact indication of the repeatability of the result. Moreover, it changes during the 
process; therefore we cannot define a priori the required number of runs to produce 
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a correct estimation of mean and variance. In addition to that, the minimum number 
of samples that are required to have a sufficient statistics is not well defined for 
space problems. Note that the use of the best value could be misleading since, 
statistically, even a simple random sampling can converge to the global optimum. 
On the other hand, an algorithm converging, on average, to a good value with a 
small variance does not guarantee that it will be able to find the best possible 
solution. For example, given the integer numbers between 0 and 10, let us assume 
that we want to find the minimum one, i.e. 0, and that an algorithm returns 50% of 
the times the value 0 and 50% of the times the value 10. The mean would be 5 and 
the variance about 28, which would lead to the conclusion that the value 0 can be 
found with probability 0.014 under the assumption of Gaussian distribution. This 
conclusion is clearly wrong. Assume now that an algorithm returns solutions with 
mean value equal to 5 and variance equal to 30 and another algorithm returns 
solutions with mean equal to 3 and variance equal to 10. In this case, which of the 
two algorithms is better performing is not well defined because the algorithm with 
higher mean value has a higher variance and, thus, also a higher probability to 
gene

o
rate solutions better than the average one. Then, if the distribution that 

describes the statistical phenomenon is not known, these two numbers are n t 
sufficient to claim that one algorithm is better than the other. Note that, because of 
this evidence, statistical tests, like the t-test, that start from the assumption of a 
Gauss distribution, are not applicable or provide unreliable results. 

An alternative index that can be used to assess the effectiveness of a stochastic 
algorithm is the success rate sp , which is related to sj  in Algorithm D.2 by 

s sp j n . Considering the success as the referring index for a comparative 
assessment implies two main advantages. First, it gives an immediate and unique 
indication of the algorithm effectiveness, addressing all the issues highlighted 
above, and second, the success rate can be represented with a binomial proba lity 
density function (pdf), independent of the number of function evaluations, the 
problem and the type of optimisation algorithm. This latter characteristic implies 
that the test can be designed fixing a priori the number of runs  
error we can accept on th estimation of the cess ra  
statistical theory developed by Minisci et al. [

bi

 
n, on the basis of the

e suc te. We propose to use a
ssume that the sample 

on 
123]. It is to a

spproporti  of successes ss rate for a given 

a  with a normal distribution, i.e. 

(the succe n in our case) can be 

approxim ted  , (1 )ps p p ppN n    , where p  

is the unknown true proportion uccesses, and that the bability of  of s  pro sp  to b

istance  from

e at 

d  derr  p , | pr s p errP p d    is at least 1 b      (see Ref. [124]). 

This leads to the expression: 

 2 2
(1),(1 )

bp p errn d     (D.3) 

and to the conservative rule: 

 2 20.25n d  (D.4) (1), b err
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obtained if 0.5p  . For our tests we required an error 0.06errd   with a 92% 

confidence ( 0.08b  ), which, according to Eq. (D.4), yields 94n  . This was 

extended to 100runsn   for all the tests in this chapter in order to have a higher 
confidence in the result. In order to have a feeling of the speed of convergence, 
stochastic based methods were applied to the solution of the whole problem for an 
increasing number of function evaluations.  

For the incremental approach, we defined a number of performance indicators 
that aim at establishing ed if the r uction of the search space operated during the 
incr ental search is reliable and efficient. It is here important to remind that the 
aim of the incremental approach is not to generate optimal solutions but to generate 
a set of sub-domains 

em

jD D

 at 

eld few, small boxes en
ing 

 bounding sets of locally optimal solutions. Therefore, 

the following indicators aim measuring the ability of the incremental approach to 
repeatedly generate a tight enclosure of good solutions. Ideally, a good pruning 
would always yi closing the global optimum together with all 
the solutions satisfy f ftol  . 
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TISSERAND PLANE 

The Tisserand plane is another name for a plot having the orbital period P on the x 
axis and the radius of the pericentre r  on the y axis. This plane turned out to be a 
very useful tool to design MGA trajectories in a certain planetary system [36]. 

In order to exploit the Tisserand plane for studying MGA solutions, first of all 
we need to approximate the full three-dimensional problem as a planar problem, 
thus neglecting the out-of plane components of all the orbits involved (bodies and 
spacecraft). We will also consider circular all the orbits of the planets in the 
planetary system (but not the one of the spacecraft). These approximations, 
nevertheless, are well met for the Solar System (with the exception of Pluto and 
Mercury) and for Ganymede and Callisto around Jupiter (the case under 
consideration). 

We decide not to deal with the position of the orbit in space, which for a planar 
problem is represented only by the anomaly of the pericentre. The phasing is 
neglected, too, which means that we assume that bodies are in the correct position 
of their orbits whenever needed. This further assumption allows removing 
completely the time from the problem, and dealing only with geometrical orbital 
intersections. The shape of any interplanetary transfer orbit is fully determined, 
under these assumptions, by two parameters: the period and the radius of pericentre 
will be used. 

By considering a plot with radius of pericentre and period, each transfer orbit is 
represented by one specific point in this plane (i.e., the so-called Tisserand plane). It 
can also be stated that performing a swing-by of a given planet changes the period 
of the orbit and its radius of the pericentre, leaving unchanged the relative velocity 
( v ) with respect to the same planet. The idea is then to consider the locus of orbits 
which intersect a planet with the same relative velocity, and draw the locus as an 
iso-   line in the Tisserand plane. Given a spacecraft orbit, in terms of P and rv  , 

and thus a point in the Tisserand plane, it is possible to compute the v  with respect 

to a given planet. Then the correspondent iso- v  curve can be drawn in the 
Tisserand plane: each swing-by with the planet will change the orbital period and 
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a  sthe r dius of the pericentre uch to move the point on the plane in either direction of 
the same iso- v  curve. Several iso- v  curves can be drawn, relative to a planet, for 

different values of v . In addition, several planets can be considered: in this way, it 
is possible to visualise graphically how a swing-by of one planet can change the 
period, the r ricentre, and the relative velocity with respect to another 
plan

Fi

adius of the pe
et. 

g. E.1 shows a Tisserand plane for Ganymede and Callisto around Jupiter. 
Iso- v  lines for different values of v  are shown in red. The blue lines represent the 

envelope of the iso- v  lines of corresponding planets. On the left of this line, or on 
the top of it, there is no intersection between the spacecraft orbit and the planet 
orbit, and thus no swing-by is possible. 

A MGA trajectory can be represented as a path in the Tisserand plane, moving 
from a starting point to a given target point or set of points. If the trajectory is 
purely ballistic, then the path will always move along one of the iso- v  lines: in 

fact, only swing-bys are available to change P and r . When DSMs are considered, 

then the v  given by the manoeuvre allows any displacement in the Tisserand 
plane, without any particular constraint. It is worth noticing, though, that a 
tangential thrust at pericentre does not modify the pericentre of the orbit itself, but 
only the perio oving along t y axis in the plane. d, thus m he 
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Tisserand plane for Ganymede and Callisto around Jupiter. Iso-v∞ lines 
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