Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A two-layer diffusive model for describing the variability of transdermal drug permeation

Meidan, V.M. and Pritchard, D. (2010) A two-layer diffusive model for describing the variability of transdermal drug permeation. European Journal of Pharmaceutics and Biopharmaceutics, 74 (3). pp. 513-517. ISSN 0939-6411

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

There is mounting evidence that the permeability coefficients (kp) that describe any given transdermal drug permeation process generally follow some form of positively skewed, non-symmetrical distribution rather than a simple normal distribution. Yet a suitable theoretical treatment of this area has not been undertaken to date. In this paper, we describe a two-layer model that can explain five drugs' kp variabilities as measured in two previously published papers. The model shows why rapidly permeating drugs would tend to exhibit more symmetrical kp distributions while progressively more slowly permeating drugs would tend to exhibit progressively more positively skewed kp distributions. Future research should take this effect into account when comparing the flux variabilities of hydrophilic and lipophilic drugs.