Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

The effect of peripheral vascular disease on structure and function of resistance arteries isolated from human skeletal muscle

Coats, P. (2010) The effect of peripheral vascular disease on structure and function of resistance arteries isolated from human skeletal muscle. Clinical Physiology and Functional Imaging, 30 (3). pp. 192-197. ISSN 1475-0961

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Peripheral vascular disease (PVD) is associated with numerous pathophysiological adaptations of the microvasculature. Considering this, active and passive pressure-dependent and pressure-independent mechanisms of vascular control were studied in small resistance arteries isolated from patients with PVD. Using pressure myography and confocal microscopy, human skeletal muscle arteriolar structure and function were compared between paired arteries; one isolated from the healthy non-diseased proximal skeletal muscle vascular bed (PSM, internal control) and the other from the diseased ischaemic part of the leg [distal skeletal muscle (DSM)]. Structurally, arteries isolated from the diseased part of the leg displayed significant atrophy compared with the non-diseased arteries. Functionally, no differences were observed in the fundamental ability small resistance arteries to contract or relax. However, active pressure-dependent myogenic contraction was significantly reduced in DSM arteries compared with PSM arteries. DSM versus PSM; 3 ± 1% versus 22 ± 4% and 3·4% ± 1·1% versus 25 ± 4% at 80 and 120 mmHg, respectively. Furthermore, structural remodelling in DSM arteries could also be correlated with significant changes in vascular wall mechanics. DSM arteries displayed significantly greater incremental dispensability, wall stress and wall strain compared with PSM arteries as a product of pressure-dependent distension. These alterations in pressure-dependent active myogenic tone and passive mechanical properties goes some way to explain uncontrolled orthostatic-dependent changes in leg fluid volume and oedema formation experienced by these patients.