Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Essential roles of three enhancer sites in sigma-54-dependent transcription by the nitric oxide sensing regulatory protein NorR

Tucker, Nick and Ghosh, T. and Bush, M. and Zhang, X. and Dixon, Ray (2010) Essential roles of three enhancer sites in sigma-54-dependent transcription by the nitric oxide sensing regulatory protein NorR. Nucleic Acids Research, 38 (4). pp. 1182-1194. ISSN 0305-1048

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The bacterial activator protein NorR binds to enhancer-like elements, upstream of the promoter site, and activates 54-dependent transcription of genes that encode nitric oxide detoxifying enzymes (NorVW), in response to NO stress. Unique to the norVW promoter in Escherichia coli is the presence of three enhancer sites associated with a binding site for 54-RNA polymerase. Here we show that all three sites are required for NorR-dependent catalysis of open complex formation by 54-RNAP holoenzyme (E54). We demonstrate that this is essentially due to the need for all three enhancers for maximal ATPase activity of NorR, energy from which is used to remodel the closed E54 complex and allow melting of the promoter DNA. We also find that site-specific DNA binding per se promotes oligomerisation but the DNA flanking the three sites is needed to further stabilise the functional higher order oligomer of NorR at the enhancers.