Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Large-scale distributed computing for accelerated structure solution

Shankland, K. and Griffin, T.A.N. and van de Streek, J. and Cole, Jared H. and Shankland, N. and Florence, A.J. and David, W.I.F. (2009) Large-scale distributed computing for accelerated structure solution. Zeitschrift fur Kristallografie, 30. pp. 227-232. ISSN 0044-2968

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Improvements in SDPD methodology have meant that ever more complex structures are being tackled using global optimisation methods. As a very general rule of thumb, the more complex the structure, the more difficult it is to locate the global minimum in the real-space search. This difficulty can, to some extent, be circumvented by running many instances of the search; for stochastic search methods such as simulated annealing, each instance can be run independently of any other. Such search methods are therefore ideally suited to disposition on a distributed grid-type system that makes use of existing networked compute resources. At the Rutherford Appleton Laboratory, the DASH structure solution code has been adapted to run on a Univa UD GridMP system in order to distribute simulated annealing runs across hundreds of computers simultaneously with excellent scaling. The principles outlined are applicable to other structure solution codes and to other grid-type systems, such as the widely used and freely available CONDOR system.