Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Electrochemical sensing of aptamer-protein interactions using magnetic particle assay and single-use sensor technology

Karadeniz, H. and Erdem, A. and Mayer, G. and Famulok, Michael and Caliskan, A. (2009) Electrochemical sensing of aptamer-protein interactions using magnetic particle assay and single-use sensor technology. Electroanalysis, 21 (11). pp. 1278-1284. ISSN 1040-0397

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A magnetic particle assay has been designed herein that can report the interactions of DNA aptamers with their cognate protein targets lysozyme (LYS) and human thrombin (THR). Electrochemical sensing of the biomolecular recognition between each aptamer and its target was explored by using a disposable graphite electrode, PGE, in combination with differential pulse voltammetry (DPV). The magnitudes of the oxidation signals of LYS and THR were measured at +780 mV and +680 mV, respectively, after interaction with the cognate aptamers attached to the surface of magnetic particles. The detection limits estimated for signal to noise ratios above 3.0 correspond to the concentrations of 10.77 μg/mL LYS (769 nM) and 2.00 μg/mL THR (54.5 nM). Our aptamer based approach that combines magnetic particles with a disposable graphite electrode performs well compared to other aptamer-based sensor-formats for quantitative protein detection with respect to sensitivity, selectivity, detection limit, and reproducibility.