Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Studies into the mechanism of action of platinum(II) complexes with potent cytotoxicity in human cancer cells

Krause-Heuer, A.M. and Grunert, R. and Kuhne, S. and Maruszak, M. and Wheate, N.J. and Le Pevelen, D. and Boag, L.R. and Fisher, D.M. (2009) Studies into the mechanism of action of platinum(II) complexes with potent cytotoxicity in human cancer cells. Journal of Medicinal Chemistry, 52 (17). pp. 5474-5484. ISSN 0022-2623

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We have examined the biological activity of 12 platinum(II)-based DNA intercalators of the type [Pt(IL)(AL)]2+, where IL is an intercalating ligand (1,10-phenanthroline or a methylated derivative) and AL is an ancillary ligand (diaminocyclohexane, diphenylethylenediamine or 1,2-bis(4-fluorophenyl)-1,2-ethylenediamine). The chiral compounds (1−9) and the racemic compounds (10−12) were tested against a panel of human cancer cell lines, with a number of complexes displaying activity significantly greater than that of cisplatin (up to 100-fold increase in activity in the A-427 cell line). The activity of the complexes containing diphenylethylenediamine (8 and 9) and 1,2-bis(4-fluorophenyl)-1,2-ethylenediamine (10−12) was significantly lower compared to the complexes containing diaminocyclohexane (1−7). Further in vitro testing, such as DNA unwinding, competition assays, and DNase 1 footprinting, was conducted on the most active compound (5) and its enantiomer (6) to provide information about the mechanism of action. These complexes display activity in cisplatin resistant cell lines, have higher cellular uptake than cisplatin, and do not activate caspase-3 as cisplatin does, indicating that these complexes exhibit a different mechanism of action.