Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Suppression of intensity modulation contributions to signals in second harmonic wavelength modulation spectroscopy

Chakraborty, Arup Lal and Ruxton, Keith C. and Johnstone, W. (2010) Suppression of intensity modulation contributions to signals in second harmonic wavelength modulation spectroscopy. Optics Letters, 35 (14). pp. 2400-2402. ISSN 0146-9592

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Recovery of the full 2f wavelength modulation spectroscopy (WMS) signal in isolation from the 2f residual amplitude modulation (RAM) due to nonlinear intensity modulation (IM) and distortion due to linear IM is demonstrated. The 2f RAM is eliminated using a fiber delay line, while the linear IM-induced distortion is eliminated by a phasor decomposition approach. This generic and robust two-pronged strategy removes the need to separately measure the 2f RAM in high-modulation-index calibration-free 2f WMS. It is also important for widely tunable 2f WMS using nontelecom diode lasers with highly nonlinear characteristics leading to high-2f RAM levels.