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Abstract

A Nonlinear Predictive Generalized Minimum Variance (NPGMV) control algorithm is introduced
for the control of nonlinear discrete-time multivariable systems. The plant model is represented by
the combination of a very general nonlinear operator and also a linear subsystem which can be
open-loop unstable and is represented in state-space model form. The multi-step predictive control
cost index to be minimised involves both weighted error and control signal costing terms. The
solution for the control law is derived in the time-domain using a general operator representation
of the process. The controller includes an internal model of the nonlinear process but because of
the assumed structure of the system the state observer is only required to be linear. In the
asymptotic case, where the plant is linear, the controller reduces to a state-space version of the

well known GPC controller.
Keywords: State-space, predictive, nonlinear, optimal, minimum variance, transport delay.
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Introduction
The aim is to design a relatively simple controller for nonlinear systems that has some of the
advantages of the popular Generalised Predictive Control (GPC) algorithms. The model based
predictive control (MBPC') approach based on linear theory has been applied very successfully in
the process industries, where it has repeatedly improved the profitability and competitiveness of a
production plant. It has been used to improve performance in difficult systems which contain long
dead times, time-varying system parameters and multivariable interactions. Predictive algorithms
were initially applied on relatively slow processes (such as thermal processes) for the chemical,
petrochemical, food and cement industries but are now applied on faster systems, such as servo
systems, hydraulic systems and gas turbine applications. Dynamic Matrix Control (DMC). due to
Cutler and Ramaker ||| and Generalized Predictive Control (GPC), due to Clarke et. al. ([2], [3])
are popular. Richalet (|4], [5]) developed some of the first predictive controllers and has applied
the technique successfully in a wide range of applications. The relationship between LQ optimal
and predictive control was explored in Bitmead et al [6]. A state-space version of a GPC

controller was obtained in [7].

The solution presented here builds upon previous results on Generalised Minimum
Variance (GMV) control. A Nonlinear Generalized Minimum Variance (NGMV) controller was
derived recently for nonlinear model based multivariable systems by Grimble ([8], [9]) and
Grimble and Majecki [ 10]. The extension over the basic NGMV control law involves an extension
of the NGMV cost-index to include future tracking error and control costing terms in a GPC type
of problem. When the system is linear the results revert to those for a GPC controller which is a
valuable solution for many applications. An advantage of the proposed predictive control

approach is that the plant model can be in a general nonlinear operator form, which might involve



hard nonlinearities, a state-dependent state-space model, transfer operators or even nonlinear

function look up tables.
The possible advantages relative to other nonlinear predictive control approaches can be listed as:

e The general approach is close in spirit to fixed model based control so avoids problems

with on-line linearization and behaviour should be easier to predict.

e [f the system is close to being linear the system will behave like a linear GPC control
design which is of course similar to DMC and many other well used and accepted

techniques.

e No advanced concepts are needed to derive the solution presented here and this can be

valuable in gaining acceptance from busy engineers in industry.

The road map for this paper is as follows. The nonlinear plant and linear state-space disturbance
models are described in § 2. It is shown in § 3 that the solution of the linear multi-step predictive
(GPC) control problem can be found from the solution of an equivalent minimum variance control
problem. The cost function and the solution of the NPGMV nonlinear optimal control problem are
described in § 4 together with the main theorem. The stability and design issues are considered in
§ 5. An illustrative design example is presented in § 6. Finally conclusions that may be drawn are

summarised in § 7.

System Models
The plant model relating input and output can be grossly nonlinear, dynamic and may have a very
general form, however, the disturbance signal is assumed to have a linear time-invariant model
representation. The system in Fig. | includes the nonlinear plant model together with the linear

reference, measurement noisc and disturbance signals.
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Fig.1: Two Degrees of Freedom Feedback Control System for Nonlinear Plant

The signals v(t) and £(t) are vector zero-mean, independent, Gaussian white noise signals. The
white measurement noise signal {v(¢)} is assumed to have a constant covariance
matrix R, = R_;i >0 and there is no loss of generality in assuming that the zero-mean white noise
source {£(f)} has an identity covariance matrix. It will be shown that there is no requirement to

specify the distribution of the noise source, since the special structure of the system leads to a
prediction equation, which is only dependent upon the /inear stochastic disturbance model. The

plant may have a very general nonlinear operator form.

Nonlinear plant model: (Wu)(r)==" . (W, )(2) (1

where z7¥I denotes a diagonal matrix of the common delay elements in the output signal paths.
The output of the non-linear subsystem W, will be denoted as u,(r)= (W u)(r). For simplicity

the nonlinear subsystem: W, is assumed to be finite gain stable but the linear subsystem, denoted



Wy =z"*W,_, is introduced in more detail below and can contain any unstable modes. If there is
no linear sub-system component then W, = /. The generalisation to different delays in different
signal paths complicates the solution but is straightforward [9]. The weighted output equation can

include any stable dynamic cost-function weighting y () = P (2" Yy(t)-

Linear State-Space Subsystem Models

The first of the sub-systems to be defined is associated with the linear disturbance model and any
linear sub-system W, in the plant model. Consider first the linear subsystems shown in Fig. 2.
The linear sub-system model in Fig. 2 may be assumed to be stabilizable and detectable and to be

represented in the state-space equation form:

z(t +1) = Ax(t) + Bu(t — k) + D&(t) (2)
y(t) = C(t) + Euy(t - k) (3)

y,(t) = C () + E u(t - k) (4)
2(t) = Ca(t) + Bu (t — k) + v(t) (5)

where 4, B, C, D, E, C,, E are constant matrices. The delay free plant transfer of the linear sub-

system, referred to above, may be written as W, = £+ C®B, where ®=(z/- A) ' The input

signal channels in the plant model are assumed to include a k-steps delay and the signals may be
listed as: z(t)= lincar sub-system states; u,(t) = input signal to the linear subsystem; u(t)=
control signal; y(t)= output signal: z(t) = observations; r(t)= set-point or reference; y,(t) =

output to be controlled including cost-weighting; r,(¢) = reference including cost-weighting.
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Fig. 2: Nonlinear Plant Input Subsystem and Linear Output and Disturbance Subsystem

Future Outputs and States: Future values of the states and outputs may be obtained as:

X +i)= Ax()+ S A (Bug(t+ j—1—k)+ DE(L+ j—1)) (6)
7=l

The expression for the future states may be obtained by changing the time in (6) by the &-steps of
the explicit transport delay giving:

x(t+i+k)=Ax(t+k)+ §_, A (Bug(t+ j-1)+ D&t + j+k— 1)) (7)

=1

Future Weighted Outputs: The weighted output equation can include any stable dynamic cost-

weighting y,(¢) = P.(z )y(t), which involves augmenting the state equation model. Noting (3) the

weighted output p (1) has the following form (for 2 >1):

y,(E+i+k)=C Azt +k)+ ZC‘pA"’ (Buo(t +i-1)+DE(t+j+k- 1)) +E uy(t+1)  (8)

=1

The outputs are to be computed for controls in the interval t € [¢, ¢ + N]. Introducing an obvious

notation for these output signals they may be collected in an N+ / vector form as:
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With an obvious definition of terms this equation may be written as:

YH—I:, N = C.\'A,»\'-‘f(’ +k+ (C,\'B‘. + E..v )U/(f vt (‘,\' D.\'W/ +k N

where the following vectors and block matrices may be defined for the case: N > 0:

C, = diag(C,;C s C,

ER [0 0
A B 0
[1"\', — “12 BN — B
A:\' AN-l[f AN Qb,
&)
c(t+1)
Wy = ; Upn =
Et+N-1))

3 and

0

0

(1)
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I{l N —
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For the special case: N = 0,4, =1,By =Dy, =0, Cy=C,, Ey=E,. The transfer W,
denotes a vector of future white noise inputs and U, , denotes a block vector of future control
signals. The block vector R , denotes a vector of future reference signals that must include the
same weighting as on the output (8) r,(¢) = P.(z7')r(t). The k steps-ahead tracking error, that

includes any dynamic error weighting, may be written as:

E =R, —(Cydyalt + k) + VUP, + C DWW, ) (12)

“t+k,N

=R

1ok, N 44k N

The weighted inferred output to be minimised is assumed to have the same dimension as the

control signal. The matrix V), in (12) for N> 0. is of a block lower triangular form:

[ E, 0 e 00
C,B E, o 10
Vy =CyBy +E, = : c,B . : (13)
C, A8 : o B @
c,A"'B CA"’B - C,B E,

For the special case of a single-stage cost N = 0 and this matrix must be defined as V), = E, .

Prediction Model
The i-steps ahead prediction of the output signal may be calculated by noting the above result (8)

and assuming for the present that the future values of the control action are known. Thus let:

g,(1 +i+k|[t)=E{y,(t +1+ k)| 1}



then, g,(t+i+k|t)=CLAGt+k|t)+ ) C,A7Buy(t+ j— 1)+ E,uy(t +1) (14)
J=1

where (¢ + k | t) denotes a least squares state estimate from a Kalman filter. Collecting results

~

for the case N > 0 the vector of predicted outputs Y,,, , may be obtained in the block matrix form:

G,(t+k|t) i Cr ; I E, 0 w0 o[ w®
Gt +1+ k1) C.A | C B E b0 | u(t+l)
gt +2+k|t) [=| CA® |a(t+k|t)+] cB 5 :

: } C AY’B ; . B, 0 ;
AN Y N-1 ¥ N-2 1 p AT
g e+N+k|8)| [CA"] C,A™'B CA"?B - CB E,| ut+N)]
; i Bl s
COnAy Vy=CnBy+Ey U row
(15)

This N+ 1 step-ahead prediction in (15) can clearly be written in the form:

Y, =CAdt+k|t)+V U, (16)
Output prediction error: AR N,
= CpAyz(t + k) + VyUy + CyD W,y ~(CyAyEE+ k| 1)+ V,U) (17)
Thence, the inferred output estimation error:
Youwr = Oy &t + %[t +C,, DWWy n (18)

where the k steps-ahead state estimation error: F(t+k|t) =z(t+k)—2(t+k|t). The state
estimation error is independent of the choice of control action. Also recall that the
optimal Z(f + & | ¢) and (¢ + & | t) are orthogonal and the expectation of the product of the future

values of the control action (assumed known in deriving the prediction equation), and the zero



mean white noise driving signals. is null. It follows that the vector of predicted signals Y, ., in

(16) and the prediction error }/M’t’N are orthogonal.

Kalman Estimator - Predictor Corrector Form

The estimates are required from a Kalman filter summarised briefly as:

x(t+1]0)y=Ax(t| 1)+ Bu,(t —k) (Predictor) (19)
X+ t+D) =20 +1[)+ K, (z@¢+1)- 2@ +1]1)) (Corrector) (20)
Z+1 ) =Cx(t +1| 1)+ Euy(t +1-k) 2

The state estimate (¢ + & | t) may be obtained, k steps ahead, using a Kalman filter [11]. In this
form of the estimator the number of states in the filter is not increased by the number of the

synchronous delays £. The desired prediction equation:
X(t+k|t)y= AR | +T,(k,z ") Bu,(t) (22)
where 7, (k.z7")denotes a finite impulse response block. T,(0,z™") = Iand for k2 1:
TkzY=(I-Az" )Yzl -4)" =2 '(/+: 'A+ 2742 + ... +:'“'A"‘") (23)
Using (19) to (21) the optimal estimate may be written:
X(+1|1+1) = AX(t |+ Buy(t = k) + K, (2(t +1) = CAX(t | 1) = CBu (1 — k) — Euy(t +1-k))
The above equation may therefore be written:

Xt|0=T, (z")z@)+T,, (z uy(r) (24)



where T,(z")=(-2"'U-K,C)A) K, (25)
T, (z")=—(I-z"'(U~-K,C)4)" =" (K ,E+(K,C-1)Bz") (26)
Observe that for the Kalman filter to be unbiased the following equation must be satisfied:
T, (z'NCD(z")B+E)z" +T,, (z™) =d(z")Bz™* 27)
This result may be verified using (25) and (26).

Generalised Predictive Control Review

A review of the derivation of the GPC controller is provided below where the input (u,) will be

taken to be that for the linear sub-system. The G PC criterion [12] to be minimised:

J=E{Y e (t+ j+k) e (t+ j+k)+ Augt+ ) upt+ )1} Q2

=0

where: E{.|t} denotes the conditional expectation, conditioned on measurements up to time 7
and A denotes a scalar control signal weighting factor. The vector of future weighted reference
signal is denoted by r,(t+ j+k) where the weighted error ¢, (t) = 7,(t) —y,(¢). The future

optimal control signal is to be calculated for the intervalt g [¢, t + N|. The state-space models

generating the signals », and y, may include any dynamic cost-function weighting Pz ™y, [11].

=

Optimal Control Solution Using State Estimate Feedback
It is not assumed that the states are available and hence an optimal state estimator must be

introduced. The multi-step cost may then be written by using the above vectors and (29):



J = B{} = BUE un =Y ) Rien ~Fa VKU 0 18} (29)

= E{(Rm\:;\' _( by T Yn-=-k.;‘.’ kN +1 4k, w)) + ('r:il\fl'Ai'Ut(?N | f} (30)

>

= o
[

where the cost weightings on the future inputs u, are written as A’, = diag{A;. A ..... A, The

terms in the cost-index can then be simplified. first by noting the optimal estimate Y, , . is

orthogonal to the estimation error Y, , . and second by recalling the future reference R, , is

assumed to be a known signal over the N+/ steps. Simplifying, obtain the vector/matrix form:
Vector form GPC criterion: ~ J =(R., v ~V.., ) Ry — Vg )+ USRAUL 4+, (31)

where J, = E{¥", ,Y.., v |t}. Substituting from equation (16) for the vector of state-estimates:

Y, on =CyA 2t +k|t) +V, Upy
and writing: fi’,,,\_‘N =Ry —CyAyi(t+ k| t) (32)

Using these results the cost function may be expanded as:
J =B = VaUin)" (B = Valpy) +URARULy +
= Rl v B — UiV R —Ri hViUly UL (Vi Viy + A% ULy + J, (33)
The procedure for minimising this cost term, if the signals are deterministic, is almost identical to
that when the conditional cost is considered. The gradient of the cost-function must be set to zero,

to obtain the vector of future optimal control signals. From a perturbation and gradient calculation

[12]. noting the ./, term is independent of the control, the vector of future optimal control signals:

r > r % 'I r'r ~ ~
Uy = (VaVy + ALY VY (R — CyAyi(t + k| 1)) (34)



The GPC optimal control is defined from this vector based on the receding horizon principle [13]

and the optimal control is taken as the first element in the vector of future controls U}, .

Equivalent Cost Optimisation Problem
It is now shown that the above problem is equivalent to a special cost minimisation control

roblem which is needed to motivate the NPGMYV problem introduced later. Let the constant
p p

positive definite, real symmetric matrix: X = IJLN + Afv that enters the above solution, be

factorised into the form: YO =WV ik, (35)

Observe that by completing the squares in equation (33) the cost-function may be written as:

_ pT ) 0Ty 1 D T 7 110 r0T v T r
J = th.{\«'l o (/r,;".'VN Rr—k‘_v\' _R/ok‘,’\fl AVLr,N o («’m'} YU LN + Jo

luk‘:\"

= (B VY = U Y )Y Vi B = YUl ) + B =V Y 'Y VR, + J,
That is, the cost-function: Ji= @F o, o +T5(F) (36)
where the signal: b, =YY (Ropin - CuAyd(t +k | f)) - YU, (37)
The terms that are independent of the control action may be written as: .J,,(¢) = ./, +.J,(t) where,
T = B (I - VY'Y V5 ) B (38)

Since the last term J,,(¢) in equation (36) does not depend upon control action the optimal control

is found by setting the first term to zero, giving the same control as defined in (34). It follows that

the GPC optimal controller for the above linear system is the same as the controller to minimise

the Euclidean norm of the signal ®,,, , in (37).



Modified Cost-Index Giving GPC Controller

The above motivates the definition of a new multi-step minimum variance cost problem that has
the same solution for the optimal controller that is needed before the nonlinear problem can be

considered. A new signal to be minimised involving a weighted sum of error and inputs:
¢ = Pe+ Fou, (39)
The vector of future values of this signal, for a multi-step cost index, may therefore be written as:
©,, =P E , +FaU’, (40)

Introduce cost-function weightings, based on the GMV weightings above, to have the form:

B,=Vi and FE=-A}. (41)

which will be justified by the property established in Theorem 3.1 below. Then motivated by the

preceding, define a new minimum variance multi-step cost-function, using a vector of signals:

J=E{J}=E{®", @, |1} (42)

t+k, N T L+ N

Predicting forward k-steps B, =LAR oy = Yot # F T (43)

Consider the signal @, and substitute for the outputs Y,  » "'Y,f,‘w + }7;.“\,. Then from (43):

D T(R,z\.(nr-a,;v = Yr-A-,N) + }1“(:)\ ) = Hv\')—}mk‘;\’ (44)

This expression may be written in terms of the estimate and the estimation error vector as:

D n = (buk_,\; 1 (D[—l.‘.'\' (45)

CN

where the predicted signal: @, , = (P‘ LA Your ) + 1','2,(’,(1\,)



and the prediction error: (i),b,k“\, =-P, ')TTM (46)
Multi-Step Cost Index: The performance index (42) may therefore be simplified and written as:

J=B{J}=E{@], &, |[t}=E{(®, +, )@, +® )|t

t+k.N t+k N t+k N

The terms in (42) can be simplified. recalling the optimal estimate YM,_N and the estimation error

Y, , v are orthogonal, and the future reference trajectory R, v 1saknown signal. Thus,

J E{(Df»kh t+k,N ]t} +b{q)t+kv~ul\/\ lf}+b{(D +k N At kN |t}+F{(Dc kvht kN lt}
= (i)r]:k,.\ld\)hk:m‘ + ‘l?{d)tTn#.N(f)t‘—kz.’v | t} (47)

. A o . 5 i T 2 -
Thence, the cost-function may be written: J(t) = @7, WPy (D) (48)
The last cost term in (48) is independent of control action and may be written as:

J(t) = E{®] Nty =E{¥? PEPY . . |t} (49)

Vl\,'\t t+k, N~ CN~ CN~ t+kN

This vector @, , , may be simplified by substituting for Y. .+ ftom (16) and (35):

Dyn = Pow(Bosw = Yeorw) + FalUln = Py (R, — C A5t + k| 8)) = (VEV, + A2)U?

N
Thence, from (35) obtain: d i = B AR, C AZE+ k|- XU, (50)

Recall the optimal multi-step minimum variance predictive control sets the first squared term in

(48) to zero d)w,ﬂ = (0. The resulting control is the same as the vector of future GPC controls.



Theorem 3.1: Equivalent Minimum Variance Cost Optimisation Problem

Consider the minimisation of the GPC cost index (28) for the system and assumptions introduced

in §2, where the nonlinear subsystem: W), = I and the vector of optimal GPC controls is given by
(34). If the cost index is redefined to have a multi-step minimum variance form (42)

J(t) = E{®!, @, |t}, where @ =P (R -V, )+F3U’, and the cost-function

N t+k N
weightings 2., =V, and FJ =-A3 . then the vector of future optimal controls is identical to the

GPC controls in (34). "

Solution: The proof follows by collecting the results in the section above. "

Nonlinear Predictive GMYV Control

The actual input to the system is the control signal u(¢), shown in Fig. I, rather than the input to
the linear sub-system u,. The cost-function for the nonlinear control problem of interest must
therefore include an additional control signal costing term, although the costing on the
intermediate signal u,(f) can be retained to examine limiting cases. If the smallest delay in each
output channel of the plant is of magnitude # -steps this implies the control affects the output & -
steps later and the control costing should include the delay (Zu)(r) = = * (A4 ,u)(¢) . This weighting
on the nonlinear sub-system input will be assumed to be full rank and invertible and can be a
linear dynamic operator but it may also be chosen to be nonlinear [11]. Thus, consider a new

signal to be minimised: P (1) = Poe(t) + Foyug(t) + (F u)t) s

A multi-step cost index may now be defined that is an extension of the cost-function in (42).

t+k N LLEN

Extended Multi-Step Cost Function: J, = E{®d" @° |t} (52)



The signal @¢,, , is defined to include the future control signal costing terms:

@)y =P E ., + B U, A (Pl )= P (R =¥ )+ Z4‘Lf’[ff‘N + it (53)

on kN = 2 ] t+k,N t+k,N N t.N

where the non-linear function %, .U, will normally be defined to have a simple diagonal form:

N

FoonU,, = diag{(Au) (1), (Fuu)(t+1),..., (Fuu)(t+ N)} (54)
and the vector of inputs: U,y = (MU, ). where J¥, « also has a block diagonal matrix form:

WU, , =diag{M W, ,.., WM}, = f()/l-fku)(t)T.,..4,(M/]ku)(t + N)T* (55)

Lk, N7 ¢

The problem simplifies when N = 0 to the single-step NGMV control problem.

The NPGMV Control Problem Solution
The solution follows from very similar steps to those in §3.3 and will therefore be summarised

briefly. Observe from (43) that @) =®,  +2*7% U, and @}, , =®,, +®,  where

t CEN" tn

7 0 A ’ 7 . - 3 alll § 40l gy i
(DML:N _(Dlvk./v + '/:(.‘,k.N( i }D::\‘(th,}v )/tri:,l\') + ]m(’ v f;k,!vl L (56)
The estimation error: &l i =DPrin = Falsn (57)

The future predicted values in the signal: @, involves the estimated vector of weighted outputs
Y, .y and these are orthogonal to¥,,, , . Note the estimation error is zero mean and the expected
value of the product with any known signal is null. The cost-function may therefore be written as:

J(t) = Y Y, + (1) (58)

where the optimal control sets @7, , = 0. The condition for optimality becomes:



P(;,\'(Hr-k,.-v - ths.-.:v\) + (e + /‘cki)/Vn\\ )Uw =0 (59)

NPGMV Optimal Control

The vector of future controls follows from the condition for optimality in (59):

&, == A2y Y'P B ~Yisn) (60)

ck.N N TN CN
A solution of (59), that is useful for implementation becomes:

i, =g (P (R ___-)?;,k‘_‘v)—/\;%v\.c-'m) (61)

LN ck,N
The optimal predictive control law 1s nonlinear, since it involves the nonlinear control signal
. and the nonlinear model for the plant }¥, . Further simplification is

costing term A,

C

possible by substituting from (16) forf’um , since equation (59) may be written as:

9 (th‘!\/ —(CyAya(t+k [ 1)+ V,v("'r(iv)) +(f;k,:\/ e ﬁ::f)/j/u\;l\' )Ut./v o ()

or P (R, ~CuAdt+k| )+ (A, , - XMW, =0 (62)

1kN

This condition for optimality is the equivalent of that stemming from (50) but with the A, is

added. Two alternative solutions for the vector of future optimal controls, in terms of the estimate

of the future predicted state, therefore become:

Wy ® —(};k,.‘\i ‘X.\'}/Li'k,x) ] Pf-‘-.(-[')e-kﬂv CyAEE + k1)) (63)
or Uyy = =Far ( PulBy oy —CyAyi(t + k[ 8)) = X 0%, U, ) (64)

Remarks: The control law is implemented using a receding horizon philosophy and it becomes

identical to the GPC controller (34) in the limiting linear case when the control costing tends to



zero (Foy = 0. My =1). From (63) if the control weighting A —0 then U, will
introduce the inverse of the plant model }4, . (it one exists) and the resulting vector of future
controls U}, will then be the same as the GPC controls for the linear system that remains.

Optimal Nonlinear Predictive Control Signal

These expressions can be simplified further by substituting for the expression for the optimal

predicted state in (22) and invoking the condition for optimality in (62):

P (R, — CyA (A a(t | €) + Ty(k. 2™ )Buy () + (£, , = X, U, = O
Recall uy(t) = W,u(t) and write: ~ R’, , = R,., v — CyAyA"i(t | t) (65)

The alternative form for the condition for optimality follows as:

P, (R iy — CyAyTy(k. ) BOK ) () + (A, y = X MU, = 0 (66)
siving U,, == (Fn ~ XM )P, (B o = Cody T (k2 ‘)U(Wlku)(t)) (67)
An alternative expression also follows from (66):
U, = ~Fpy (P B,y = Cy AT (k2 YBOY ) () - X, M, U, ) (68)
To simplify the equations also introduce the constant matrix:
C,=P,C.A, =V, C A, (69)

Condition for optimality: Equation (66) may be written as:

BB, o +( A — X W —C Tk 2HBC M, U, = 0 (70)

NT Lk N ckN 1k,N o0



Optimal control: Two possible expressions for the vector of future optimal controls follow:

I .
['rt @ e (‘/z;k,zv B X,VI/VH(._\ _CQ«TU(A?' 2 )ch)/l{k.x) B Rt[fk./\' (71)
E Vs = 'f;;’w (Pc:.-v(h)'ux.w - (’!NAA'A%“ 1)) - (XN + Cﬂl)(k’z—l )B('jfo)j/l{kﬁ[‘rf,.v) (72)

Theorem 4.1: NPGMYV Optimal Controller

Consider the linear components of the plant, disturbance and output weighting models in state

space form (2), (3) with input from the nonlinear finite gain stable plant dynamics W,,. The
multi-step predictive control cost-function to be minimised, involving a sum of future cost terms.

is defined in vector form as: J, = B}, @7, |t} (73)

t+k Ntk

0

v.v depends upon future error, input and nonlinear control signal

where N > 0 and the signal ®

. e - 0 _ D 0 fO
COStlng tt‘,lmb. (I).r,.k;.v . Rwljhk,,\f * E\. [ N ¥ 'Z;k./\"

- (74)

The error and input cost-function weightings are introduced as in the GPC problem (28) and these
determine the block matrix cost forms £, =¥ and £°, = =A% . The control cost weighting may be
nonlinear and has the form (Au)(r) = (A u)(¢ — k). where k represents the transport delay and .7,
is full rank and invertible. Define the constant matrix X, =V;V, + A} then the NPGMV optimal
control law to minimize the variance (73) is given as:

y-l

U, = (Fun =Xy +CI(5 2 VB, ) Py (B — CuAyA'a(t | 1)) (75)

(¥ L



The current control can be computed using the receding horizon principle from the first element in

the alternative expression for the vector of future optimal controls:

U, =7y (PR, - CA%E| 1) = (X, +C,T,(k,2M)BC )W, U, | (76)

tN ck,N ! + § N

and the finite impulse response term T,(k.z ') = (1 — A*z"* }(zI - 4)”" and matrix C, =F,,C A, .

0

Solution: The proof of the optimal control was given before the Theorem and the assumption to

ensure closed loop stability is explained in the stability analysis below. =

Remarks: The expression (76) leads to the structure in Fig. 3 which is useful for implementation.
This involves a Kalman predictor stage and note that the order of the Kalman filter depends only

on the delay free linear subsystems and not the channel delays. If the output weighting P, includes
a near integrator it appears in the feedback and reference channels and it is desirable to move this

integrator term into the common path. The cost-index (74) when the input costing F(“\ is null

* (Lerw

gives @} =P E.  +(7 U Y=V, U,,) but for a single-step cost V, = E_

and in this case®) ~=E'FE,  +(F4, U, ). The limiting case of the NPGMV controller is

potrkN CkN tn

therefore related to an NGMV controller where the error weighting is scaled by the E:‘ term.

Controller structure 57 v Noise
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. 71 x ~ ) o 47 -+

F, . /i—A N Cro i » IS

E 7 Output -
: - P R Y i Disturbance
J 4'4—(¢5[1)(;"” )R( w|™ ’Iu A i

Observations signal

Fig. 3:  NPGMY Current Control Signal Generation and Kalman Predictor



Compensator structure / v
_____________________________________________________________________ Plant
R & . : Uin LU vy o4z
E }()s\ ~%.‘ ;;I\‘ Cll/ : )I r"
E i f Quitput
- v 4k 0N ey ! !
i » CAT, (z 5 S s , [
i ¢ 1n &) ! Xy +CI,BC, [a— W, : Dislurlbance
E Uy & A»( T =] 4_‘ & E
: @ J2 (“ ) u, 1y 1

Fig. 4: NPGMYV Compensator in Estimation Future Controls Form

Stability of the Closed Loop and Design Issues

To consider stability properties a different expression is required for the control action where the
results are expressed in closed loop operator form. An algebraic result is first required involving

terms from the Kal/man filter equations. Recall from (27):
C,A'T, (COB+E)z™* +C,A'T,, = C,A' DBz

but from (23) T, (k,z ')=(/ — A"z")(zI - A)"'. Using these results and noting W, = E+C®B, the
desired result is obtained as:

C,T,(k,z")B+C,A'T,,(z")+ CA'T

’
0

(z7')2*W =C,®(:")B (77)

f1 (0

Assumptions and Closed Loop Expressions
For linear GMV designs stability is ensured when the combination of a control weighting and an
error weighted plant model transfer is strictly minimum phase. For the proposed nonlinear

= : S a S < ; - < o - . 1 r B & ] )
predictive control it is shown below that a nonlinear operator (1 —.F:,M(J\ - (,‘,(b BC )W, ()

must havc a stable inverse where the measure of stability, such as finite gain stability, depends



upon the assumption of stability on the nonlinear plant sub-system}¥, . For this stability

discussion assume that the stochastic inputs are null. Then 2(t) = Cx(t) + Eu (t — k) + v(t)
— (E + C®B)u,(t - k), and the optimal control becomes:
Fi (PR = Cod T (27 Wty (1~ K) = C, AT, (27 g (1)
~C,Ty(k.z Y Buy(t) = X MynU, )
Substituting from (77):
Uy =-Ziin (PR = X H\U,,
—C, AT (2 Wty (£ k) = C,A'T ,, (27 g (£) = C Ty (k2™ ) Bug (1))
=- £ PR, - XU, -C0Bu)) (78)

The control costing is normally a linear model and under this assumption (78) corresponds to the

following condition for optimality:

(I _‘};L‘,]N(‘YN +C,®BC m)”n\\) N~ -](—A v dh, kN (79)
where (17, U, )= [, u)(t (M, u)(t+ N)']". The desired expressions for the vectors of

future optimal controls and nonlinear plant subsystem outputs therefore become:

Future controls:

U, =(1-AL(X, +COBC )wx) [~ B s (80)

t,.N ck,N o~



NL Subsystem future outputs:
r ] - v ot -1
WUy = Wi (-2 (X + COBCOMe ) (- Zai v PaRosi ) (81)
Total NL future plant outputs:

-1
MK ([ 'ﬁkﬁ.\'()",\' +C,DBC )M, \*) ('f;:}\]) Rk ) (82)

~

~
| &,
1

Stability Condition and Cost Function Weightings

The operator (I-7" (X, + C,®BC )1 is assumed to be finite gain m, stable and if the

2 31
(Y

linear plant sun-system is open loop stable all the operators in (80) to (82) are stable. If the open
loop plant is not stable then further assumptions are needed to guarantee the stability of terms in

(82).

[f there exists a PID controller that will stabilize the nonlinear system, without transport
delay elements, then a set of cost weightings can be defined to guarantee the existence of this

inverse and hence ensure the stability of the closed-loop. Assume that only the error and control

weightings are used, and that the input weighting A%, — 0. Then X, =V V, +A} > VIV,

o
7 =( [- 7L (X, +COBC W, ) (-f ‘PR

t,N 1k N ck N en r+k,N)

> (T-ZR VIV, +C ABC ) (- APuRen)

CkN N Ck,N" o~ “t+k N
Recall that in the single-step cost problem, where N = 0, the matrix V|, = E is assumed square

=~ .
and non-singular. Hence u(t) — ([ -f:h‘f(Ep +(7p(DB)]/ll/k) (-f;klE;v (t)) Also assume the

c ]



dynamic weighting is on the plant outputs y,(¢) = P.(zy(t) then E +C OB = P.(zYW,. It

3 ; =1 P
follows that in this limiting case:  u(t) > (-2 ETEW, M, ) (- A, Bl (#) (83)

Cost Weighting Choice

One of the main problems in nonlinear control is to ensure a stabilising control law and as the
assumption at the start of the main Theorem 4.1 confirms this depends on the selection of the cost

weightings. A practical method of deriving such weightings is suggested by these limiting results.

s ” -1 T oy ) . = R (o =l .
The term ([ -7, Ep PW, M. ) may be interpreted as the return-difference operator for a
nonlinear system with delay-free plant model J4{ =W, J4 . Thus, if the plant already has a PID

controller that stabilises this model, the ratio of weightings (—fC;]E;I}) can be chosen equal to the

PID controller. Then the weightings are linear and satisfy FC’,('E;R. =Ko .

Even for a linear GPC design stability is not guaranteed for all cost function weightings. There
will be some system descriptions where even scalar non-dynamic weightings may or not ensure a
stable closed-loop design. Now if the cost horizon is reduced to one step the controller becomes
equal to an NGMV design, which can be guaranteed to have a stabilizing solution by a similar but
simpler method as in the previous paragraph. The argument is then that as the multi-step cost is
introduced and the horizon increases it is normally the case that predictive controls improve
responses. Thus the strategy of starting with a well tuned NGMV solution and then increasing the
cost horizon to introduce predictive action is a practical method of finding cost terms that stabilize

the closed loop.



Robustness of the Closed Loop System

In the predictive control of linear systems it is usually the case that step response overshoots
reduce as the cost horizon increases. This behaviour is related to smaller overshoots in frequency
domain terms in the sensitivity functions and this suggests there is a commensurate improvement
in robustness. Similar results are observed in the nonlinear case but robustness and sensitivity
then relates to the sensitivity operators. The subject of robustness in the presence of plant
uncertainties does of course deserve much more attention. A possible approach to the analysis of

NPGMV systems is indicated briefly below.

Consider the case of a stable open loop system and note that the relationship (77) can be employed
to show that the system in Fig. 4 can be redrawn as in Fig. 5 below. This figure is of interest
because it resembles a Smith predictor type of structure but for the present discussion it allows

robustness to be assessed in a particular case. Neglect for the moment most external inputs and

assume that the plant has an additive uncertainty of the form: » =MW +AM . Then noting the
signs of the signals summed in the bottom path observe that the diagram in Fig. 5 may be redrawn
as shown in Fig. 6. From this diagram it is clear that the internal feedback loop which includes the
delay free plant model has a significant effect on robustness. This loop depends on both the error
and the control signal weighting choices. If for example the system has large high frequency
uncertainty, such as resonances in a mechanical system, then the control costing can include a lead
term introduced at frequencies below the possible resonant behaviour. The result will be a low
gain in the forward path at high frequencies as determined by the inverse of the control costing
within the inner loop. To some extent this weighting acts as a natural so called robustification
filter. Zames (1966, [28]) small gain theorem can then be applied to demonstrate that an

improvement in robustness has been achieved.



uise

Compensator
Nonlinear v
e A e A e M R e plant
]?hk,N + “ - 5
5 7= s e O )
: [av i -/L?;;,\ o ¢/ [ )1/ ik ="t
N . Y Output
Zzm ‘
o Cyd T, () ' |
7] ~PA A R X, +C®BC, |e— -
| N ¢ 10 U, i Disturbance
' Kalman predictor :
k - |
z W Cro ‘
p o X Observations z

Nonlinear Smith Predictor Implied by NPGMV Compensator Structure

Fig, 5:
Compensator
e Nonlinear
PR F RS e R e i g, plant
B n e - — —
" By | Fexn Cp —* ANV
: i .
LN 2
p l L
- Cy AT, (z , :
i e e bl X, +C®BC,, le—
: ! ) 0 U,
t Kalman predictor
| ]) 3 L
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Predictive Control Design for Dynamic Ship Positioning

One of the potential application areas for NPGMV control is in dynamic ship positioning and
manoeuvring. A desired ship trajectory is often known in advance (in the case of dynamic ship
positioning, the control objective normally consists in keeping the vessel's position constant,

irrespective of wave/wind/current disturbances). Consider for example a ship given in the inertial



Earth-based coordinate frame, as shown in Fig. 7. The objective here is to control the vector of
ships position and heading n:[x.y,z//]/ via a thrusters/propeller propulsion system, so that a
desired trajectory 7, is followed. This is a well known problem that has been analyzed in detail
in literature — see for example [14 to [7]. In the following. the NPGMV controller is used and
assessed for this application.

A}y

ship-based frame xs (surge)

vs (sway) -
u

1y

v

Earth-based frame x

Fig. 7: Dynamic Ship Positioning Problem

System model: The simplified linearized dynamics of the system are described by the following

differential equation: My+Dv=r (84)

where M is the inertia matrix, D represents system damping, v=[u © r] is a ship-based velocity
vector, and 7is a vector of forces in x; and y, directions, and the yaw torque. This approximation is
valid especially at low speeds and positioning problems. The full nonlinear model, taking into
account Coriolis and nonlinear damping terms, is given in [[4].

The velocity vector is related to the Earth-based positions by the following kinematic

equation: n=R(w)v (83)



lcosy —siny 0

|
where R(y) is the 3DOF rotation matrix: R(¥) - | siny cosy Ot (86)

L0 0 1

A simple diagonal thruster configuration was assumed in this paper, and the following nonlinear

static model for thrust forces and torque was used [15]:

T =pd'K,(n)nln =123 (87)

where p is the water density, d is the thruster diameter. # is the velocity in [rev/s], and K7 is the
additional nonlinear thruster coefficient. The nonlinear thruster characteristic as a function of # is
shown in Fig. 8. In the following simulation studies, we have used models from the Marine

Systems Simulator Toolbox for Matlab [18].

iR 10" Thruster charactenstic

Fig. 8: Nonlinear Thrusters Characteristic
Based on the above system description, the open-loop Hammerstein model may be separated into
nonlinear and linear components as shown in Fig. 9. with the black-box model )4/ representing

the thrusters. Note that the nonlinear transformation matrix R(y) is not considered part of the

subsystem W; and will only be used to plot the ship position in the inertial frame.



For the controller design, a discrete model of the linear dynamics was obtained using the Tustin

method. with the sample time 7; = 0.1 sec. A nominal one sample delay (k = 1) was assumed for

this model.

e

v

R(y)

n T v i n

- !
L y B —

U
A

v

A4

Thrusters Ship dynamics

Fig. 9: Decomposition of the Ship Model

Wave model: The wave disturbance was described using a second order resonant system,

; e g ; k s
according to the transfer function: w(s) S where the parameters were defined as:
s”+20w,s +w,

d ; b - 5
w, - 0.8 and ¢ =0.1. The scaling factor k£ was chosen so that realistic wave amplitudes were
\Y

obtained. The frequency responses of both the ship dynamics (not including the thrusters model)

and the wave disturbance are plotted in Fig. [0. The main objective of the controller is to reduce

the effect of the wave motion.
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Fig. 10: Frequency Responses of System Models (plant, disturbance and nominal error weight)

NPGMYV Controller implementation: The structure of the model allows the solution of the
algebraic loop problem to be simplified. Recall the expression for the optimal control sequence

(76):

Ut.N = ‘-/T;;,IN (Rfork.N - (XN +C‘,,'ZL(A‘,Z I)ch)“{k,xlﬂw)

The nonlinear thrusters model represented by )4/, is static and diagonal. while the control
weighting can be separated into a component affected by the current control (the direct through
term) and a part dependent only on the past control values: %, (z)= 4 (r)+ F(r), where % (z)
contains a one-step time-delay (note that a similar decomposition would apply to a dynamic 4,
model). Employing block matrix notation to indicate the block-diagonal structure of 7, . the

expression for the vector of future controls can be rewritten as:

(Fow + Zin) U = (B = (Xy +C, T (k2™ )BCo) WirUip )

Regrouping the terms, an explicit expression for U/, y follows as:



T - 1 i ’ ~
DLN - (f;N - -X;v)/l{k.r\') (_Rr.nu &N —(f;,N - C‘,iTg)B(JJUM{k,N)er_N) (88)

Since T,(k.z™') contains a one-step time delay, the right-hand side of (88) involves the vector of
controls computed in the previous step, and hence the current control is dependent on the past

controls and inputs and the algebraic loop is removed.

For a practical realization of the control law, it is necessary to invert the static operator
(}EN - X,\,l/l{kN). Since Xy is in general a full matrix, a closed analytical form of the inverse will
not normally exist, even though the )4/, . nonlinearity is itself invertible. The solution is to solve

the resulting nonlinear equation on-line. using an iterative Newton method [19]. An alternative is
to insert a memory block inside the feedback loop — this leads to a realizable but suboptimal

solution.

The final structure of the controller is as shown in Fig. 11. Note that the actuator saturation limits

have also been included in the model.

U, n B R0
> » C,, —»
Rl»l\ N
77(4)
My~
x/;/
Kalman
Filter |s

Fig. 11: Implementation of the NPGMYV Controller



Nominal Design: Since the system includes integrators (the controlled variables are assumed to
be the position and heading), the controller does not normally require integral action — the PD
structure is sufficient for perfect steady-state tracking. Following the tuning guidelines given in
§5.2. the NPGMYV controller design was initially based on such a PD controller C,,,(z™") with the
tuning gains selected as K, = 2xI and K, = diag{6.2,4} (the derivative filters with time-constant ls
were also included with the D terms). The dynamic weightings were thus defined as
P(z")=C,,(z") and £, =-V,, with the input weighting A}, set to zero. As noted in Theorem
4.1, for the case of N = 0, these weightings correspond to the limiting case of the NGMV

controller, whilst the horizon N > 0 corresponds to the predictive control case.

Two simulation scenarios were considered: point positioning subject to wave motion and also
elliptical trajectory following. The nominal simulation results for the limiting case are shown in
Fig. 12 and 13. With the nominal weightings. the NPGMV control performance is close to that of
PD control (not shown) — this selection of weightings is thus a useful starting point for the design.
The responses were intentionally made rather oscillatory in order to show the rapid improvement
with increasing N — the results that follow indicate that only a few steps are sufficient for a

satisfactory design.
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Fig. 13: Elliptic trajectory following - NPGMYV control with N =0



Tuning Trials and Predictive Control: In the following modified design a lead term was included
in the control weighting to reduce high-frequency noise amplification, while the error weighting
PJ(z") was modified by penalizing the frequency band corresponding to the wave motion
spectrum. This creates an inverted notch (bandpass) filter. In addition, the thrusters nonlinearities
were used to redefine the control weighting as /g (u)= FSH(u) where F(Z(z”) is the nominal
linear control weighting, and H(u) is the thrusters characteristic shown in Fig. 8. The inverse of

was approximated by the expression: n=4.6078-sign(T)-/|T'| . Such definition takes into account

the varying nonlinear gain of the actuators.

Simulation trials were performed for increasing values of the prediction horizon N. The
responses for N = 3 are shown in Figures 14 — 15, and the reduced effect of the wave disturbance
is evident when compared with Figs. 12-13. This is achieved at the expense of the more aggressive
thrusters action (responding and compensating for the wave motion), however with saturation

limits satisfied.
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Dynamic ship positioning: NPGMV, N=3 X position
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Fig. 15: Elliptic trajectory following — Modified NPGMYV control with N=3

Final Remarks on the Example: Predictive control, when an extended prediction horizon is used.
has the advantage that the control action can begin well before the changes in the reference signal
occur, thanks to the future set point knowledge. This behavior is particularly useful in trajectory

tracking applications and was demonstrated for the maneuvering subclass of the DP problem.

In addition to the nonlinear thruster characteristics in the controller internal model, the use of a
nonlinear control weighting allowed to compensate for nonlinearities, while defining the dynamic
weightings to penalize specific frequency ranges led to more effective wave disturbance rejection.
The tuning procedure was facilitated by using the existing PD controller as a starting point for the
design. The method does of course have its limitations; namely, the nonlinear part of the model is

assumed to be stable, and the predictions are performed based on the linear subsystem, as in Fig.



1. Despite these limitations, it may be concluded that the NPGMV offers some advantages
relative to the basic NGMV design, exploiting the well-known GPC control properties, at the
expense of some additional complexity in the implementation. A generalization of this work will

involve state-dependent models and will make use of the full nonlinear model of the ship.

Concluding Remarks

There are many nonlinear predictive contro] strategies based on ideas such as state-dependent
models, linearization around a trajectory and others ([20] to [27]). However, the aim of the
current development was to try to produce a control law which is related closely to fixed model
based control and simple to implement. The NPGMV control design problem for a state-space
system involved a multi-step predictive control cost-function and provided a method of
introducing future set-point information. The predictive controls strategy described is a
development of the NGMYV design method. It has the very nice property that if the system is linear
then the control reverts to the Generalised Predictive Control design method which is well known

and accepted in industry.
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