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Abstract 

A Nonlinear Predictive Generuli::ed Minimum Variance (NPG!vfV) control algorithm is introduced 

for the control of nonlinear discrete-time multivariable !'J~ystems. The plant model is repre ented by 

the combination of a very gen ral nonlinear op rator and also a linear subsystem which can be 

open-loop unstable and is represented in state- pac mod I form. The multi-step predictive control 

cost index to be minimised involve both weighted error and control signal costing terms. The 

solution for the control law is derived in the time-domain using a general op rator representation 

of the process. he controller include, an int rnal m del of the nonlinear proce s but because of 

the assumed structure of the system the state observ I' is only required to be linear. In the 

asymptotic case, where the plant is linear, the controll I' reduces to a state-space v rsion of the 

well known GPC controller. 
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Introduction 

The aim is to design a relatively simple controller for nonlinear s st ms that has some of the 

advantages of the popular Generalised Predictive Control (GPC) algorithms. The model based 

predictive control (MBPC) approach based on linear theory has been applied very successfully in 

the process industries, where it has repeatedly improved the profitability and competitiveness of a 

production plant. It has been used to improve performance in difficult systems which contain long 

dead times, tim -varying system parameter and multivariable interactions. Predictive algorithms 

were initially applied on relatively slow processes (such as thermal processes) for the chemical, 

petrochemical, food and cement industri s but are now applied on faster systems, such as servo 

systems, h draufic systems and gas turbine applications. pynamic Matrix Control (DMC). due to 

Cutler and Ramaker [11 and Generalized Predicti 'e Control (GPC), due to Clarke et. af. ([2], [3]) 

are popular. Richalet (l4J, [5]) developed some of the first predictive cantrall rs and has applied 

the technique successfully in a ide range of applications. The relationship bet een LQ optimal 

and predictive control was xplored in Bitmead et al [61. A tate-space version of a GP . 

controlkr was obtained in [7]. 

The solution presented here b lilds upon previous results on Generalised Minimum 

Variance (CiMV) control. A Nonlin ar Cieneralized Minimum Variance (NGMV) controller as 

derived recently for nonlinear model hased multivariable s, stems b Grimhle ([8J, [9] and 

Grimhle and Majecki rIO]. Th tension over the basic NGlv.fV control law involves an extension 

of th N;MV cost-index to include future tracking error and control costing terms in a GPC t pe 

of problem. When the system is linear the result. revert to those for a GPC controller \vhich i a 

valuable solution for many applications. n advantage of the proposed predictive control 

approach is that th plant model can be in a general nonlinear operator form. which might involve 



hard nonl inearities, a state-dependent . tate-space model, transfer operators or even nonl inear 

function look up tables. 

The possible advantages relative to other nonlinear predictive control approache can be listed as: 

•	 The general approach is close in spirit to fixed model based control so avoids problems 

with on-line linearization and behaviour hould b easier to predict. 

•	 If the system is close to being linear the sy ·tem will b have like a linear GPe control 

de ign which is of course similar to DMC and many other well used and accepted 

techn iq ues. 

•	 No advanced concepts are needed to d rive the solution presented here and this can be 

valuable in gaining acceptance from busy engineers in industry. 

The road map for this paper is a follow. The nonlinear plant and linear state-space di turbance 

models are described in § 2. It i shown in § 3 that the solution orthe linear multi-step predictive 

(GPC) control problem can be lound from the solution of n equivalent minimum variance control 

problem. The cost function and the solution of the IJ>CiMV n nlinear optimal control problem are 

described in § 4 together with the main theorem. The stability and design issues are consid red in 

§ 5 An illustrative design example is presented in § 6. Finally conclusions that may be drawn arc 

summari ed in § 7. 

System Models 

The plant model relating input and output can be grossly nonlinear, dynamic and may have a very 

genera! form, how vel', the disturbance signal is a SLImed to have a linear time-invariant m del 

representation. The system il Fig. I includes the nonlinear plant model together with the linear 

reference, measurement noisc and disturbance signals. 
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Fig.1: Two Degrees of Freedom Feedback Control System for onlinear Plant 

The signals v(t) and ~(t) are vector zero-mean. independent, Gaussian white noise ignals. The 

white measurement nOIse signal {v(t)} IS assumed to have a constant covariance 

matrix R, = R~ 2: 0 and there is no loss of generality in as uming that the zero-mean white noise 

source {~(t)} has an identity covariance matrix. It will be shown that there is no requirement to 

pecify the distribution of the noi~e sourc~, since the sp cial tructurc of the sy tcm leads to a 

prediction equation, which is only dependent upon the linea!" stochastic disturbance model. The 

plant may have a vel' general nonlinear or rat I' form. 

Nonlinear plant model: ( I) 

where z-k J denotes a diagonal matrix of the common d lay elements in the output signal paths. 

The output of the non-linear subsystem Y\.)k will be denoted as uo(t)= ()!~kU)(t). For simplicity 

the nonlinear subsystem: WI is assumed to be finite gain stable but the linear subsystem, denoted 



Wo =:: .k WOl" is introduced in more detail below and can contain any unstable modes. If ther is 

no linear sub-system component then W(j~ = I. The generalisation 0 different delays in different 

signal paths complicates the solution but is straightforward 19]. The weighted ou/pu/ equation can 

include any stable dynamic cost-function weighting Yp(t) = PC(Z-l)y(t). 

Linear Stule-.5'pacl! .)uhsystem Models 

The first of the sub-systems to be defined is associated with the linear disturbance model and any 

linear sub-system Wo in th plant ode!. Con ider first the linear subsyst ms shown in Fig. 2. 

The linear sub-system model in Fig. 2 rna be assumed to b stabilizable and detectable and to be 

represent d in the state-space equation form: 

.r:(t + 1) == Ar(t) + Bull(t - k) + D~(t) (2) 

y(t) == Cx(t) + Euu(t - k) (3) 

Yp(t) == Cpx(t) + E ,1L (t - k) (4)
1 u

z(t) == G.c(t) + EuuU - k) + v(t) (5) 

\ here A. B. C. D, E. CI" E" are (;onstant matric s. The delay free plant transfer of the linear sub­

system, referred to above. may be ritten as lVo~ == E + C<I)/3, wher. <1) = (21 - A) I. The input 

signal channels in the plant model are assLim d to include a k-steps delay and the signals may b 

listed a-:I:(1) == linear sub-system states; l/u(t) == input ignal to the lin\,;ar subsystem; n(t) = 

control signal; y(t) = output signal; z(t) == observati n ; r(t) == set-point or reference; Yp(t) 

output to be controlled including cost-weighting; rp(t) == reference including cost-weighting. 
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Future Outputs and States: uture values of the states and outputs may be obtained as: 

xU + i) = A'xU) + ±A'-/ (Buo(t + j -I-k) + Dc;(I +j -I)) (6) 
,~I 

The expression for the future states may be obtained by changing the time ir (6) by th k-. teps of 

the explicit transport delay giving: 

x(t + i + k) = ....I'x(l + k) + ±A' I (Bu()(l + .i - I) + Dc;U + j + k - I)) (7) 
I-I 

Future Weighted Outputs: The weighted output equation can include any stable dynamic cost­

weighting:tlp(t) = p,Jz-J)y(t) , which involves augmenting the st, te quation model. oting (3) th 

weighted output y('(t) has the following f rm (for 7. 21): 

y/t + i + k) = CpA'x(t + k) +I C'pA'-J (Buo(t + .1-1) + Dc;(t + j + k -1)) +E,,!Lo(t + i) (8) 
J-l 

Th output arc to b computed lor controL in the interval T E [t, t + N]. Introducing an obvious 

notation for these output signals they may be collected in an Nfl vector form as: 

.Measurement 
noise 
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With an obvious definition orterms this equation may be written as: 

where the following vectors and block matrices ma b defined for the case: N > 0: 
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For the special case: N = O,AN = I ,BN = DN = o. eN = C p ' EN = E p ' The transfer ~ '\ 

denote a vector of future white noise inputs and U,.\, denote' a block vector of future control 

signals. The block vector R",v denotes a vector of future reference ignals that must include the 

same weighting as on the output (8) r~(t) -= Pc(z'l)r(t). The k steps-ahead tracking error, that 

includes any dynamic error weighting, may be writt n as: 

The 'eighted inferred output to be minimised is assumed to have the same dimension as the 

control signal. The matrix v'v in (12) for N> 0. is ofa block 10 er triangular form: 

Ep 0 0 0 

CpB E p 0 

VN = GNBN +E, = 
G AN 2B 

p 

G AN In 
l' 

GpB 

C AN 
-

2n 
II 

Ep 

(,'fJ
- !' 

0 

Ell 

(13) 

For the special case of a single-slane cost ~ = 0 and thi . matrix must be defined as VN -= E p . 

Prediction Model 

The i-steps ahead prediction of the utput signal ma be calculated by noting the ab ve re ult (8) 

and assuming for the present that the future values of the contI' Iaction are known. Thus let: 



then, YpU + i + kit) = CpA'i:(t + kit) + L
1 

CpA'-J Buo(t + .J -1) + EpuoU + i) ( 14) 
r 1 

where .i:(t + kit) denotes a least squares state estimate from a Kalmanjilter. Collecting results 

for the case N> 0 the vector of predicted outputs ~.k N may be obtained in the block matrix form: 
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(15) 

This N+ J step-ahead prediction in (15) can clearly be written in the form: 

Y .N = C A ".i( t + kit) + VvU
o ( 16)

t+k, i"¥ I "J 

Output prediction error: - Y;.k N - . N, Yt , , 

- hence. the injerred output estimation error: 

where the k steps-ahead state estimation error: ,i:(t + kit) = :r(t + k) - i( t + l.: I t) . The state 

estimation error IS indep ndent of the ch ice of control action. Also recall that the 

optimal.i:(t + f..,; I t) and :r(t + kit) are orthogonal and the expectation of th product of the future 

values of th control action (a. sumed known in deriving the prediction equation), and the zero 



mean white noi, e driving signals, is null. It follows that the vector of predicted signals Y:Tk,N In 

(16) and the prediction error Y; N are orthogonal. ., 

Kalman Estimafor - Predictor Corrector Form 

The estimates are r quired from a Kalman filter summari ed briefly as: 

x(t + I It) = Ax(r It) + BuoU - k) (Predictor) ( 19) 

x(r + 11 t + I) = x(r + II t) + K f ( z(t + I) - z(t + II t)) (Corrector) (20) 

z(t + II t) =Cx(t + II t) + £uo(t +1- k) (21 ) 

The state estimate x(t + kit) may be obtained, k steps ahead. using a Kalman filter [II]. In this 

form of the estimator the numb r of states in the filter is not increased by the number of the 

synchronous delays k, The desired prediction equation: 

(22) 

where To(k,.:-I)den tes a finite impulse response hlock. To(O,Z-') = land for k ~ I: 

ing (19) to (21) the optimal estimate may b written: 

xU + I It + I) = Ax(r It)+ BuoU -k) + K, (z(t + 1)-CAx(t 1t)-CBuo(t -k)- t'u()(t + l-k») 

Th~ ab ve equation may therefore be written: 

(24) 



where (25) 

(26) 

Observe that for the Kalman filter to be unbias d the following equation mu t be satisfied: 

(27) 

This result may be verified u ing (25) and (26). 

Generalised Predictive Control Review 

A review of the derivation of the CPC controller is provided below where the input (1,0) will be 

taken to be that for the linear sub-system. The CPC criterion [12] to be minimised: 

J =E{ £e/I + j + k)/ e,,(t + j + k) +J..7uo(t + j)' uo(t + j»1 t} (2S) 
/=0 

where: E{.jt} denotes the conditional e, pectation, conditioned on measurements up to time t 

and A) denote. a scalar control signal weighting actor. The vector of future weighted reference 

signal is denoted by r;,(L + j + k) where the weighted error (~p(t;) = T~(t) - Yp(t). The future 

optimal control ignal is to be calculated for the interval t s [l, f + N]. The state-space models 

generating the sionals r , and y" may include any dynamic cost-function w ighting~.(=-'). rllJ. 
l 

Optimal Cuntrol Solution Using Slale Estimate Feedback 

[t is not a sumed that the stat s are available nd hence an optimal state estimat I' must be 

introduced. The multi-step cost may then be written by using the above vectors and (29): 



(29) 

(30) 

where the co,t weightings on the future inputs 110 are written a i\~ =diag{A~,AI2, .... A~!}. The 

terms in the cost-index can then be simplified, fir t by noting the optimal estimate Y;'k,N 15 

orthogonal to the estimation err r Y;-k,N and second by recalling the future refer nee R'+kN IS 

assumed to b a known signal over the N+ 1 steps. Simplifying, obtain the vector/matrix form: 

Vector form GPC criterion: (31 ) 

where Jo =:: E{Y,~A ",Y,+k,,\' It}. Substituting from equation (16) f, r the vector of state-estimates: 

and riting: (32) 

Using these results the cost unctiol may be expanded as: 

(33) 

The proc~dure for minimising this cost term. if the signals are detcrmini'tic, is almost identical to 

that when th conditional cost is con id red. The gradient or the cost-function must be set to zero, 

to obtain the vector of future optimal control signals. From a perturbation and gradient calculation 

[J2j, noting the J l1 term is ind pendent of the control, the vector of/illure oplim"f confrol signals: 

(34) 



Th GPC optimal control is defined from this vector based on the receding horizon principle [13] 

and the optima) control is taken as the first element in the vector of future cOl1trols [ltUN. 

Equivalent Cosl Optimisation Problem 

It is now shown that the above problem is equivalent to a sp cial cost minimisation control 

problem which is needed to motivate the NPGMV problem introduced later. Let the constant 

positive d finite, real symmetric matrix: X
N 

:::: V;V
N 

+ 1\~ that enters the above olution, be 

factorised into the form: (35) 

Observe that by completing the 'quares in equation (33) the cost-function may be written as: 

That i , the co t-function: (36) 

wh re the signal: (37) 

The terms that are independent of the control action ma be written as: ./IU(t)::::./O +./I(t) where, 

(38) 

Since the last term J1U(t) in equation (36) does not depend upon control action the optimal control 

is found by setting the first term to zero, giving the same control as defined in (34). It follows that 

the 0PC optimal controller for the above linear system is the same as the controller to minimise 

the Euclidean norm of the signal cD1+k.N in (37). 



Modified Cost-Index Giving GPC Controller 

The above motivates the defir ition of a new multi-step minimum variance cost problem that has 

the same solution for the optimal controller that i needed before the nonlinear problem can be 

considered. A new signal to be minimised involving a weighted sum of error and inputs: 

(39) 

The vector offuture values of this signal, for a multi-step cost index, may therefore be written as: 

() 
(40)I ,. 

Introduce co t-function weightings, ba ed on the GMVweightings above, to have the form: 

~.\, =:: V/; and (4\ ) 

which will be justified by the property established in Theorem 3.1 b low. Then motivated by the 

preceding, define a new minimum variance multi-step cost-function, using a vector of signals: 

(42) 

Predicting forward k-sleps (43) 

Consider the ignal ¢t+k,N and substitut for the output Y:lk,N ==}~,J,;,N + ~'k,N' Then from (43): 

(44) 

This expression may be written in terms of the estimate and the estimation error vector as: 

(45) 

where the pred ictcd signal: cPt; k,N = (~,' (R,,+k,N - f;+k, I) + F;~~.lJ;~N ) 



and the prediction error: <f:> t+k ,N =- ~'N Y;+k ,N (46) 

Multi-Step Cost Index: The performance index (42) may therefore be simplifi d and written as: 

The terms in (42) can b simplified, recalling the optimal estimate ~+k.N and the estimation error 

~t-/;;, are orthogonal, and the future reference trajectory R, ...J.N is a known signal. Thus, 

(47) 

Thence, the cost-function may be written: (48) 

The last cost term in (48) is independent of control action and may be written as: 

(49) 

This vector <Pt+k,N may be simplified by ubstituting for ~+/;;,N' from (16) and (35): 

<P =P (R -f ) po[o =1> (R -(' I·A·(t klt))-(\!I"V A2)UO~k.N eN IIk,N tik,N + eN' t,1 eN l.k,N N r ty.Y . + . N N + I\.N t,N 

Thence, from (35) obtain: (50) 

Recall the optimal multi-step minimum variance predicf;ve control sets the first squared ferm in 

(48) to zero eDt.,./;;,N = (). The resulting control is the same s the vector or f Ilurc C;PC controls. 



Theorem 3.1: Equivalent Minimum Variance Cost Optimisation Problem 

Consider the minimisation of the GPC cost index (28) for the system and assumptions introduced 

in §2, wh re the nonlinear subsystem: V\.{k = J and the v ctor of optimal Gre controls is given by 

(34), If the cost index is redefined to have a multi-step minimum variance form (42) 

weightings Pc", =V; and J';~. =- \~, , then the vector of future optimal controls is identical to the 

GPC controls in (34). • 

Solution: The proof follows b collecting the results in the ection above. • 

Nonlinear Predictive GMV Control 

The actual input to the system is the control signal u(t), hown in Fig. I, rather than the input to 

the linear sub-system uo' The cost-function for the nonlinear contI' I problem of interest must 

therefore include an additional control signal co ting term, although the costing on the 

intermediate signal uo(t) can be retained to e, amine limiting \.:ascs. If the small t delay in each 

output channel of the plant is of magnitude k -steps this irnplie' the control affects the output k-

steps later and the control costing should include the dclay(~u)(t)=:: k (f;:kU)(t). This weighting 

on the nonlinear sub-sy'tem input will be assumed to be full rank and invertible and can be a 

linear dynamic operator but it may also be chosen to be nonlinear [11J. Thw, consider a new 

signal to be minimised: ¢()(!) = p".e(l) + Fcouo(t) (;Z;:U)(l) (51 ) 

A multi-step cost index may now be defined that is an extension of the cost-function in (42). 

Extended Multi-Step Cost Function; (52) 



The signal <D~+k,N is defined to includ the future control signal costing terms: 

where the non-linear function ~k,N will normally be defined to have a simple diagonal form: t,N 

(54) 

and the vector of inputs: Ut~N = (Y1{k,NUt")' where Y1{k,l\ also has a block diagonal matrix form: 

(55) 

The problem simplifies when N = 0 to the single-step NGMV control problem. 

The NPGMV 'antral Prohlem Solution 

The solution follows from very similar steps to those in §3.3 and will therefore be summarised 

briefly, Observe from (43) that <Do =cD + z-k.T."NUt and (D~+kN=<D~+kN 1,<D,o'.Lvwhere
t,N t.,v C,,-,..N • , . 

<i>U = cD +.T.U = P (R - Y )+ F UUO +.T U (56) 
, ... k.N tlk.N "k,N L.N C'N t.k,N L+k,N (:N toN "k.N t.< 

The estimation error: (57) 

The future predicted values in the signal: <i>~+k,N involve' th e timatt:d vector of weighted outputs 

~tk,N and these are orthogonal to }~'k.,\' ote the estimation error is zero mean and the expected 

value of the product with any known signal is null. The cost-function may therefore be written as: 

(58) 

where th optimal control sets <1>~ k,N = (). The cond itian for optimal ity becomes: 



(59)
 

/vPGA1V Optimal Control 

The v ctor of future controls follows from the condition for optimality in (59): 

u =- (7 - A2W )-1 P (R - Y ) (60)
t,,," ck,N N lk.:>' cO' l+k,N IJk,N 

A solution of (59), that is useful for implementation becomes: 

(61 ) 

The optimal predictive control law is nonlinear. since it involves the nonlinear control signal 

costing t rm .T::..k,N and the nonlinear model for the plant J1{k,N' Further simplification [s 

possible by substituting from (16) for~+k,N' since quation (59) may be written as: 

or (62) 

This condition fhr optimality i the equivalent f that stemming from (50) hut with the;z:;; ',N is 

added. T 0 alternative solutions for the vector a/future optimal controls, in terms of the estimate 

of the future predicted tate. therefore becom : 

(63) 

or U = -.T k-
I 

•r (P.,(R "V - lNA,y:/;(t + kit)) - XNW JJ ) (64)
t.N I/~ (/\ t t-"'d' lk ,I' t,N 

Remarks: The control law is implemented using a receding horizon philosophy and it b comes 

identical to the (fPC controller (34) in the limiting linear case when the control costing lends to 



zero (~k,N ----:; 0 J1{k,N = I). From (63) if the control weighting ~k,N----:; 0 then !.N will 

introduce the inverse of the plant model Y1{k,~ (if one exists) and the r suiting vector of future 

controls Ut~N ill then be the same as the GPC comrols for the linear system that remains. 

Optimal Nonlinl:'ar Predictive Control Signal 

These expressions can be simpli led further by substituting for the expression for the optimal 

predicted state in (22) and invoking the condition for optimality in (62): 

Recall uo(t) = J1{kU(t) and vrite: ( 5) 

The alternative form for the condition for optimality follows as: 

(67) 

An alt rnativ xpres ion also follows from (66): 

To impl i fy the equations also introduce the constant matri x: 

(69) 

Condition for optimali~ll: Equation (66) may be written as: 

(70) 



Optimal control: Two possible expressions for the vector of future optimal controls folio 

(71 ) 

Theorem 4.1: PGMV Optimal Controller J. 

Consider the linear components of the plant, disturbance and output weighting models in state 

space form (2), (3) with input from the nonlinear finite gain stable plant dynamics Y\.ik' The 

multi-step predictive control co t-function to be minimised, involving a sum of future cost terms. 

is defined in vector form as: J = E{<p°T et>0 I t} (73)
P f+k,N f+k, 

where N> 0 and the signal <f>~+k,N dep nds up n future error, input and nonlinear control signal 

costing terms: <f>0 = P E + FO ° +.T U (74)
tck,N CN t+k,N oW t,N ck,N t,N 

The error and input cost-function weightings are introduced as in the GPC problem (28) and these 

determine the block matrix cost forms P,,,, = v'0 and F;0, :=: -A~,. The control cost weighting may be 

nonlinear and has the fonn (f;:U)(/) :=: (y:;:-kll)( t - k) , where k represents the transport dela and f;:k 

is full rank and invertible. Define the constant matrix X
N 
=V~'vN + A~ then the j f'GMV ptimal 

controlla...v to minimize the variance (73) is given as: 



The current control can b computed lIsing the receding horizon principle from the first element in 

the alternative expression for the vector o/future optimal controls: 

• 
Solution: The proof of the optimal control was given bef< re the Theorem and the assumption to 

ensure closed loop stability is explained in the stability analysis below. • 

Remarks: The expression (76) leads to the structure in Fig. 3 which is useful for implementation. 

This involves a Kalman predictor stage and note that the order of the Kalman tilter depends only 

on the d lay free linear subsystems and not the channel delays. If the output weighting Pc includes 

a near integrator it appears in the feedback and reference channels and it is desirable to move this 

integrator term into the common path. The cost-index (74) when the input costing F U j nul!
eN 

and in thi case<p;ltk,N = F~'EI+k,,y + (~k,i!IJ. Th limiting case of the NPGtvIV c ntroller is 

therefore related to an NGAifV control I r wher the error weighting is scaled by the E 1
' term. 
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Fig. 3: NPGMV Current Control Signal Generation and Kalman Predictor 
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Stability of the Closed Loop and Design Issues 

To c nsider stability properties a different expr ssion is required for the cantI'l action where the 

results are expressed in closed loop operator forlll. An algebraic result is fir t required involving 

erms from the Kalman filter equations. Recall from (27): 

but from (23) To(k,z 1)=(l-Akz-k)(=T-Afl. Usingth seresultsandnoling WOk =E+CC!>B,the 

de ired result is obtained a : 

C... T (I. I)fl (' 4 kl' ( 1) r< ,'kT" ( I) kHr ''''( l)fl (77)/,! U r.: l Z , ¢' /2 Z + l q,''i /l Z Z n Ilk = '~4! Z 

Assumptions and Closed l.oop Expressions 

For lin ar GMV de iglls stability is ensured when the ombination of a control weighting and an 

error w ighled plant model transfer is strictly minimum phase. For the proposed nonlinear 

must have a st ble in erse where the measure of stability, such a finite gain stability, depends 



upon the assumption of stability on the nonlinear plant sub-system U(k. For this stability 

discussion assume that the stochastic inputs are null. Then z(t) = Cx(t) + Euo(t - k) + 'o(t) 

---+ (E + Cet>B)uo(t - k), and the optimal control b comes: 

Substituting from (77): 

(78) 

The control costing is normally a linear model and under this a 'sumption (78) corresponds to the 

following condition for op imality: 

(79) 

where (YV;k.} t J = [(YV;k'u)(tf, ... ,(YV;kU)(t + N)T f· The desired expressions for the vectors of 

future optimal control' ,md nonlinear plant sub ystem Ot tputs therefor become: 

Future controls: 

(80) 



NL Subsystem future outputs: 

(8t) 

Total NL future plant outputs: 

Stability Condition and Cost Function Weightings 

linear plant sun-system is open loop stable all the operators in (80) to (82) are stable. If the open 

loop plant is not stable then further assumptions are needcd to guarantee the stability of term In 

(82). 

[f there exi ts a PID controll r that will stabilize the nonlinear system. without transport 

delay elements, then a set of cost weightings can be defined to guarantee the exi ·tence of this 

inverse and hence ensure the stabiJ ity of th closed-loop. As ume that only the error and control 

weighting are used. nd that the input weighting A~ --) (). Thcn XN= V~VN + A~v --) V,~V 

Recall that in the ingle-step cost problem, wh re N = O. the matrix V = "'1 is assumed square 
N 1 



follows that in this limiting case: (83) 

Cost Weighting Choice 

One of the main problems in nonlinear control is t ensure a stabilising control law and as the 

assumption at the start of the main Theorem 4.1 confirms thi depends on the selection of the cost 

weightings. A practical method of deriving such weighting. is suggested by these limiting results. 

The telm (1 - .;z:;;~lE~·~.V~)kJ1{k) may be interpreted as the return-differenc operator for a 

nonlinear syst m with delay-free plant model J1.{ =WOk J1{k' Thus, if the plant already has a PJD 

controller that stabilises this model, the ratio ofweightings (-~kIE;Pe)can be chosen equal to the 

PID controller. Then the weightings are linear and satisfy FC-k'E;~. =KI'J{)' 

Even for a linear GPC design stability is not guaranteed for all cost function weightings. There 

will be some ystem descriptions where even scalar non-dynamic weightings mayor not ensure a 

table closed-loop d sign. Now if the cost horizon is reduced to one step the cantrall r becomes 

equal to an NGA1V design, which can be guaranteed to have a stabilizing solution by a imilar but 

simpler method a in the previous paragraph. The argument is then that a' the multi-step cost is 

introduced and the horizon increase it is normally the case that predictive c I1trols improve 

resp nses. Thus the strategy or starting with a weI[ tuned NGMV solution and then increasing the 

cost horizon to introduce prcdicti e action is a practical method offinding co t terms that stabilize 

the closed loop. 



Robustness of the Closed Loop System 

In the predictive control of linear systems it is usually the case that step response overshoots 

reduce as the cost horizon increases. This behaviour is related to smaller overshoots in frequency 

domain terms in the sensitivity functions and this sugge ts there is a commensurate improvement 

in robustness. Similar re ults are observed in the nonlinear case but robustness and sensitivity 

then relates to the sensitivity operators. Th subject of robu tness in the presence of plant 

uncertainties does of course deser e much more attention. A possible approach to the analy is of 

NPGMV systems is indicated briefly belo.... 

Consider the case of a stable open loop sy tem and note that the relationship (77) can be employed 

to show that the system in Fig. 4 can be redrawn as in 'ig. 5 below. This figure is of interest 

because it resembles a Smith predictor type of structure but for the present discussion it allows 

robustness to be assessed in a patiicular case. eglect for the moment most external inputs and 

assume that the plant has an additive uncertainty of he form: W = W + W. Then noting the 

signs of the signals summed in the bottom path observe that the diagram in Fig. 5 may be redrawn 

as shown in Fig. 6. From this diagram it is clear that the internal feedback loop which includes the 

delay free plant model has a signiticant effect on robustness. his loop depend n both the error 

and the control signal weighting choices. If for example the system has large high frequ ncy 

uncertainty, such as resonances in a mechanical system, then th control costing can include a lead 

term introduced at frequencies below the pos ibJe r onant behaviour. The result will be a low 

gain in the forward path at high frequencies as determined by the inverse of the c ntrol co ting 

within the inn r loop. To ome extent thi weighting acts as a natural so called robustification 

filter. Zames (1966, (281) small gain theorem can then be applied to demonstrate that an 

improvement in robustn 55 has b en achieved. 
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Predictive Control Design for Dynamic Ship Positioning
 

One of the potential applicati n areas for NPGlvIV control is in dynamic ship positioning and
 

manoeuvring. A desired ship trajectory is often known in advanc (in the case of c~ynamic ship
 

positioning. the wntrol objective normally consists in ke .ping the v ssel's position constant,
 

irrespective of wave/wind/current disturbances). Consider for example a ship given in the inertial
 



Earth-based coordinate frame, as shown in Fig. 7. The bjective here is to control the vector of 

ships position and heading '7 =(x,Y,Ij/]' via a thrusters/prop Iler propulsion s stem, so that a 

desired trajectory '7r<:1 is followed. This is a well known problem that ha been analyzed in detail 

in literature - ee for examplc [14 to 17]. In the following, the NJ'GMV controller is lIsed and 

assessed for this application. 

Y 

ship-basedframe 
xs(surge) 

,'t/fYs (sway) 
u 

IjI (yaw) 

... 

-----------------. 

Earth-basedframe x 

Fig. 7: Dynamic Ship Positioning Problem 

System model: The simplified lin ariLcd dynamics of the system are described by the following 

di ffer ntial equ tion: Ali, + Dv = r (84) 

where M is the inertia matrix, D represents sy. tem damping. v = [u u r( is a ship-based velocity 

vector, and T is a vector of force' in X" and 'v',' directions, and the yaw torque. Thi pproximati n IS 

valid especially at low spceds and positioning problems. The full nonlinear model, taking into 

account Corio1is and nonlinear damping term. is given in [14J. 

The velocity vector is related to the Earth-based po itions by the following kinematic 

equation: (85) 



where R(If) is the 3DOF rotation matrix: (86) 

A simple diagonal thruster configuration was a umed in this paper. and the following nonlinear 

static model for thru t forces and torq LIe was u d [15]: 

(87) 

where p is the water density. d is the thru ter diameter, n is the velocity in [rev/s]. and Kr is the 

additional nonlinear thruster coefficient. The nonlinear thruster characteristic as a function of n is 

shown in Fig. 8. In the following imulation studies. w have u ed models from the Marine 

Syst ms Simulator Toolbox for Matlab [18]. 
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fig. 8: Nonlinear Thrusters Cbaracteristic 

Based on the ahove ystcm description, the opl.::n-Ioop Hammer tein model may be eparatcd into 

nonlin ar and linear components as shown in Fig. 9. with the black-box model J1{k representing 

the thrusters. Note that the nonlinear transfi rmation matrix R( Iff) i' not considered part of the 

subs st III Woand will only be u ed to plot the ship po ition in the inertial fralle. 



For th controller design, a discrete model of the linear dynamics w s obtained using the Tustin 

method, with the ample time Ts = 0.1 sec. A nominal one sample delay (k = I) was assumed for 

this model. 

17£ 
----+ R(lj/) 

11 '71 l 
-

T 

• ~) Js 

Thrusters Ship dynamics 

Fig. 9: Decomposition of the Ship Model
 

Wave model: The wave disturbance was described using a second order resonant system,
 

according to the transfer function: w(s)=, k , . where the parameters were defined as:
 
s- + 2t;OJ"s + (U,;
 

OJ" = 0.8 rad and t; == O. I. The scaling factor k was chosen '0 that realistic wave amplitudes ere
 
S 

obtained. The frequency responses of both the ship dynamics (not including the thru ters model) 

and the wave disturbance are pI tted in Fig. 10. The main objective of the controller is to reduce 

the efrect of the wave motion. 
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Fig. 10: Frequency Responses of System Models (plant, disturbance and nominal error weight) 

NPGMV Controller implementation: Th structure of the model allows the solution of the 

algebraic loop problem to be simplified. Recall the expression for the optimal control equence 

(76): 

The nonlinear thrusters model represented by J11~ is static and diagonal. while th control 

weighting can bC'cparated into a component affected by the current control (the direct through 

term) and a part dependent only on the past control values: .J;:k(r)=.r;;(r)+.F:(r), where .J;"(r) 

contains a one- tep time-delay (note that a imilar decomposition would apply to a dynamic J1{k 

model). Employing block matrix notation to indicate the block-diagonal structure of ';::1-'" the 

expression for the vector of future controls can be n:writtcn as: 

Regrouping the terms, an explicit expression for 1,.1\' follow as: 



(88) 

Since To(k.z~') contains a one-step time d lay, th right-hand side of (88) involve the vector of 

controls computed in th pr vious step, and hence the current control is dependent on the past 

controls and inputs and the algebraic loop is removed. 

For a practical realization of the control law, it is necessary to invert the static operator 

(JL;;,N - XNfiik,N ). Since /~v is in general a fu II matrix. a closed analytical form of the inverse wi II 

not normally exi t, even though the M{A,\' nonlinearity i itself invertible. The solution is to sol e 

the resulting nonlinear equation on-line. using an it rative Newton method [19]. An alternative is 

to insert a memory block inside the ~ edback loop - this leads to a realizable but suboptimal 

solution. 

The final structure of the controller is as shown in Fig. j I. ote that the actuator saturation limits 

have also been includ d in the model. 
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Fig. It: Implementation of the PGMV Controller 



Nominal Design: Since the syst m includes integrators (the controlled variables are assumed to 

be the position and heading), the controller does not normally rcquire integral action - the PD 

structure is sufficient for perfect steady-state tracking. Following the tuning guidelines given in 

§5.2. the NPGMV controll r design was initiall based on such a PD controller C/'f)(Z·I) with the 

tuning gain selected as K~ = 2x I and Kd = diag{ 6,2,4} (the derivative filters ith time-constant Is 

were also includ d with the D terms). The dynamic weightings were thus defined as 

-':(Z·I)=C/'J)(Z·I) and .7;k =-V:'J' with the input weighting A2
, set to zero. As noted in Theorem 

4.1, for the case of N = 0, these weightings correspond to the limiting case of the NGMV 

controller, whilst the horizon N> 0 con'esponds to the predictive control case. 

Two simulation scenarios were considered: point positioning ubject to wave motion and also 

elliptical trajectory following. The nominal simulation results for the limiting case are shown in 

Fig. 12 and 13. With the nominal eightings, the PGMV control p rformance is close to that of 

PD control (not shown) - this selection of weightings is thus au efu! starting point for the design. 

The responses wcre intentionally made r ther oscillat ry in order to show the rapid improvcment 

with increasing N - the results that follow indicate that anI a few steps are ufticient for a 

alisfactory design. 
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Fig. 13: EHiptic tr-a.iectory following - NPGMV control with N = 0 



Tuning Trials and Predictive Control: In the following modified design a lead term was included 

in the control weighting to reduce high-frequency noise amplification, while the error weighting 

Pe(:;-I) was modified by penalizing the frequency band corresponding to the wave motion 

spectrum. This creates an inverted notch (bandpass) filter. In addition, th thrusters nonlinearities 

were used to redefine the ontrol weighting as ';::Ju)== Fc~H('u) where F;.~(Z-I) is the nominal 

linear control weighting, and H(u) is the thrust rs characteristic shown in Fig. 8. The inverse of H 

was approximated by the expression: 1/ == 4.6078· signeT) JiTI. Such definition takes into account 

the varying nonlinear gain of the actuators. 

Simulation trials were performed for increasing values of the prediction horizon N. The 

responses for N = 3 are shown in Figur s 14 - J5, and the reduced effect of the wave disturbance 

is evident when compared with Figs. 12-13. This is achieved at the expense of the more aggressive 

thrusters action (responding and compensating for the wave motion), however with saturation 

limits satisfied. 
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Dynamic ship positioning: NPGMV, N=3 x position 
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Fig. IS: Elliptic trajectory following - Modified NPGMV control witb N= 3 

Final Remarks on the Example: Predictive can rol, when an extended prediction horizo 1 is used, 

has the advantage that the control action can begin .veil before the changes in the refer nee signal 

occur, thanks to the future set point knowled e. Thi behavior is particularly useful in trajectory 

tracking applications and was dem nstrated for the maneuvering subclass of the DP problem. 

In addition to the nonlinear lhru ter characteristics in the controller internal model, the use of a 

nonlinear control w ighting allowed to compensate or nonlinearitie, , while defining the dynamic 

weightint:>s to penalize specific frequency ranges led to m re effective wave disturbance rej etion. 

The luning procedure was facilitated by using the existing PO controller as a starting point ror the 

design. The method does of cour e have it limitation; namely, the nonlinear part of the model is 

as umcd to be stable, amI the prediction are perform d based on the linear subsystem, as in Fig. 



II. Despite th se limitations, it may be concluded that the NPGMV offers some advantages 

relative to the basic NGMV design, exploiting the well-known GPe control properties, at the 

expense of some additional complexity in the implementation. A generalization or this work will 

involve state-dependent models and will make use of the full nonlinear model of the ship. 

Concluding Remarks 

There are many nonlinear predictive control strategies ba ed on ideas such as state-dependent 

models, linearization around a trajectory and oth rs ([20] to [27 J). However, the aim of the 

current development was to try to produce a control law which is related closely to fixed model 

based control and simple to implement. The J PGMV control design problem for a state-space 

system involved a multi-step predictive control cost-function and provided a method of 

introducing future set-point information. The pI' dictive controls strategy described is a 

dev lopment of the NGMV design method. It has the very nice property that if the system is linear 

then the control reverts to the Generali 'ed PI' dictive Control design method which is well kn wn 

and accepted in industry. 
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