Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

The impact of physical conditions on network connectivity in wireless sensor network

Wu, Tsung-Ta and Kwong, Kae Hsiang and Chong, Shen and Michie, W.C. and Andonovic, Ivan (2010) The impact of physical conditions on network connectivity in wireless sensor network. In: Proceedings of the 7th IEEE conference on Consumer communications and networking conference. IEEE, Piscataway, pp. 1-2. ISBN 9781424451753

[img]
Preview
PDF (CCNC10_accepted_final_Wu.pdf)
CCNC10_accepted_final_Wu.pdf - Accepted Author Manuscript

Download (141kB) | Preview

Abstract

In Wireless Sensor Networks, end-to-end routing paths need to be established when nodes want to communicate with the desired destination. For nodes assumed to be static, many routing protocols such as Directed Diffusion have been proposed to meet this requirement efficiently. The performance of such routing protocols is relative to the given network connectivity. This paper addresses mobile sensor nodes taking into account the diversity of scattered node density and investigates how physical conditions impact on network connectivity which in turn influences routing performance. Three analysis metrics: path availability, path duration, and interavailable path time are proposed to quantify the impact of different physical conditions on network connectivity. Simulation results show that the network connectivity varies significantly as a function of different physical conditions.