Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Inactivation of Campylobacter jejuni by exposure to high-intensity 405-nm visible light

Murdoch, L.E. and MacLean, Michelle and MacGregor, S.J. and Anderson, J.G. (2010) Inactivation of Campylobacter jejuni by exposure to high-intensity 405-nm visible light. Foodborne Pathogens and Disease, 7 (10). pp. 1211-1216. ISSN 1535-3141

[img]
Preview
PDF
Murdoch_2010_2_.pdf - Final Published Version

Download (172kB) | Preview

Abstract

Although considerable research has been carried out on a range of environmental factors that impact on the survival of Campylobacter jejuni, there is limited information on the effects of violet/blue light on this pathogen. This investigation was carried out to determine the effects of high-intensity 405-nm light on C. jejuni and to compare this with the effects on two other important Gram-negative enteric pathogens, Salmonella enteritidis and Escherichia coli O157:H7. High-intensity 405-nm light generated from an array of 405-nm light-emitting diodes was used to inactivate the test bacteria. The results demonstrated that while all three tested species were susceptible to 405-nm light inactivation, C. jejuni was by far the most sensitive organism, requiring a total dose of 18J cm−2 of 405-nm light to achieve a 5-log10 reduction. This study has established that C. jejuni is particularly susceptible to violet/blue light at a wavelength of 405nm. This finding, coupled with the safety-in-use advantages of this visible (non-ultraviolet wavelength) light, suggests that high-intensity 405-nm light may have applications for control of C. jejuni contamination levels in situations where this type of illumination can be effectively applied.