Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

MIMO fuzzy internal model control

Edgar, Craig and Postlethwaite, Bruce (2000) MIMO fuzzy internal model control. Automatica, 36 (6). pp. 867-877.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Model-based controllers are now beginning to gain widespread acceptance in industry. However, the majority of these controllers are based on linear models and performance in controlling the non-linear processes common in the chemical industry is sub-optimal. The use of a non-linear model could yield significant improvements in control performance. In this study a relational model from a fuzzy input space to a crisp output space is constructed by applying a least-squares identification technique to past process data. This model is termed a crisp-consequent fuzzy relational model (ccFRM) and is capable of giving an accurate representation of a non-linear system. A novel inversion method is presented which allows the ccFRM to be inverted and used within the well-known IMC structure. This new controller is termed a fuzzy internal model controller (FIMC) and test results are presented showing the FIMC performing both servo and regulatory action on a multi-variable simulated pH system. This process is extremely non-linear and exhibits severe interaction effects and is consequently a very difficult system to control. The simulation is introduced in detail, as are the tests carried out, and the performance of the FIMC in these tests is found to be encouraging.