Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

pH control: Handling nonlinearity and deadtime with fuzzy relational model-based control

Sing, Christoph and Postlethwaite, Bruce (1997) pH control: Handling nonlinearity and deadtime with fuzzy relational model-based control. IEE Proceedings Control Theory and Applications, 144 (3). pp. 263-268. ISSN 1350-2379

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The application of fuzzy logic to the design of nonlinear controllers has become increasingly popular in recent years. Most of the developments have been in controllers of the rule-based type. An alternative approach, and one which reflects trends in conventional control, is to use fuzzy logic to build a process model, and then to incorporate this into a standard model-based controller scheme. The paper proposes the application of fuzzy relational models (FRMs) for the non-linear control of a pH process. The pH in both a simulated and a laboratory continuously stirred tank reactor (CSTR) was controlled by a model predictive controller (MPC), incorporating a fuzzy model created using a recently developed method of FRM identification. The controller performance is compared with that of a fuzzy rule-based controller, that of a PID controller and that of a linear MPC. The comparison shows the superiority of fuzzy relational model-based control (FRMBC) for highly nonlinear processes. The suitability of the FRMBC for real-world applications is demonstrated by its control performance on a laboratory-scale plant.