Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Model-based fuzzy controller

Postlethwaite, Bruce (1994) Model-based fuzzy controller. Chemical Engineering Research and Design, 72A. pp. 38-46. ISSN 0263-8762

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Most fuzzy controllers developed to date have been of the rule-based type, where the rules in the controller attempt to model the operators response to particular process situations. These controllers require considerable 'knowledge engineering' in that someone has to gather a collection of rules from knowledgeable operators and then condense them into a consistent rule-base for the controller. An alternative approach to using fuzzy logic in a controller is described in this paper. Instead of attempting to model the operator's decision making process, this controller design uses a fuzzy model of the process itself and imbeds this in a relatively conventional model-based controller. The paper also describes two tests of the controller design. The first is a simple level control simulation, and the second is the temperature control of a laboratory heat exchanger. The results of this work indicate that the fuzzy-model-based controller described here can equal or even exceed the performance of more traditional control techniques, even on quite simple processes.