Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

New identification algorithm for fuzzy relational models and its application in model-based control

Postlethwaite, Bruce and Edgar, Craig and Brown, Martin (1997) New identification algorithm for fuzzy relational models and its application in model-based control. Chemical Engineering Research and Design, 75 (4). pp. 453-458. ISSN 0263-8762

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Fuzzy relational modelling is a 'grey-box' method of modelling complicated, non-linear systems directly from input-output data. Conventional methods of relational model identification, which rely on arguments based on set theory, are very fast, but do not produce models with very high accuracy. Identification using direct search numerical optimization is able to significantly increase model accuracy, but at the cost of greatly increased computation time. This paper describes a new method of fuzzy relational model identification which makes use of a particular form of relational model structure. The principal advantage of this structure is that it is linear in its parameters, allowing conventional linear least-squares techniques to be used to identify the model. The performance of the new technique is compared with previous methods of identification using the well established Box-Jenkins furnace data. The method is able to achieve very similar performance to the direct-search optimization methods, but in a fraction of the time. By embedding a model generated by the new technique in a model-based controller, and comparing the results with earlier work, it is also shown that the improved model accuracy greatly improves the controller performance.