Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Enhancing the generality of fuzzy relational models for control

Kelkar, Bhooshan and Postlethwaite, Bruce (1998) Enhancing the generality of fuzzy relational models for control. Fuzzy Sets and Systems, 100 (1-3). pp. 117-129. ISSN 0165-0114

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A promising area of research in fuzzy control is the model-based fuzzy controller. At the heart of this approach is a fuzzy relational model of the process to be controlled. Since this model is identified directly from process input-output data it is likely that 'holes' will be present in the identified relational model. These holes pose real problems when the model is incorporated into a model-based controller since the model will be unable to make any predictions whatsoever if the system drifts into an unknown region. The present work deals with the completeness of the fuzzy relational model which forms the core of the controller. This work proposes a scheme of post-processing to 'fill in' the fuzzy relational model once it has been built and thereby improve its applicability for on-line control. A comparative study of the post-processed model and conventional relational model is presented for Box-Jenkins data identification system and a real-time, highly non-linear application of pH control identification.