Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Strongly differentiable solutions of the discrete coagulation–fragmentation equation

McBride, A.C. and Smith, A.L. and Lamb, W. (2010) Strongly differentiable solutions of the discrete coagulation–fragmentation equation. Physica D: Nonlinear Phenomena, 239 (15). pp. 1436-1445.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We examine an infinite system of ordinary differential equations that models the binary coagulation and multiple fragmentation of clusters. In contrast to previous investigations, our analysis does not involve finite-dimensional truncations of the system. Instead, we treat the problem as an infinite-dimensional differential equation, posed in an appropriate Banach space, and apply perturbation results from the theory of strongly continuous semigroups of operators. The existence and uniqueness of physically meaningful solutions are established for uniformly bounded coagulation rates but with no growth restrictions imposed on the fragmentation rates.