Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The high resolution crystal structure of rat liver AKR7A1 understanding the substrate specificities of the AKR7 family

Kozma, E. and Brown, E. and Ellis, E. and Lapthorn, A. (2003) The high resolution crystal structure of rat liver AKR7A1 understanding the substrate specificities of the AKR7 family. Chemico-Biological Interactions, 143. pp. 289-297. ISSN 0009-2797

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The structure of the rat liver aflatoxin dialdehyde reductase (AKR7A1) has been solved to 1.38 A resolution. The crystal structure reveals details of the ternary complex as one subunit of the dimer contains NADP+ and the inhibitor citrate. The underlying catalytic mechanism appears similar to other aldo-keto reductases (AKR), whilst the substrate-binding pocket contains several positively charged amino acids (Arg-231 and Arg-327) which distinguishes it from the well characterised AKR1 family of enzymes. These differences account for the substrate specificity for 4-carbon acid-aldehydes such as succinic semialdehyde (SSA) and 2-carboxybenzaldehyde, as well as for the idiosyncratic substrate aflatoxin B1 dialdehyde of this subfamily of enzymes. The AKR7 enzymes seem to be subdivided into two subgroups based on their sequence and kinetic properties. Modelling of the rat AKR7A4 highlights important structural differences localised within the active site of the two isoenzymes.