Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The crystal structure of rat liver AKR7A1: a dimeric member of the Aldo-Keto reductase superfamily

Kozma, E. and Brown, E. and Ellis, E. and Lapthorn, A. (2002) The crystal structure of rat liver AKR7A1: a dimeric member of the Aldo-Keto reductase superfamily. Journal of Biological Chemistry, 277 (18). pp. 16285-16293. ISSN 0021-9258

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The structure of the rat liver aflatoxin dialdehyde reductase (AKR7A1) has been solved to 1.38î.. resolution. Although it shares a similar a/b barrel structure with other members of the aldo-keto reductase superfamily, AKR7A1 is the first dimeric member to be crystallised. The crystal structure also reveals details of the ternary complex as one subunit of the dimer contains NADP+ and the inhibitor citrate. Although the underlying catalytic mechanism appears similar to other aldo-keto reductases, the substrate-binding pocket contains several charged amino acids (Arg-231 and Arg-327) that distinguish it from previously characterised aldo-keto reductases with respect to size and charge. These differences account for the substrate specificity for 4-carbon acid-aldehydes such as succinic semialdehyde and 2-carboxybenzaldehyde, as well as for the idiosyncratic substrate aflatoxin B1 dialdehyde of this subfamily of enzymes. Structural differences between the AKR7A1 ternary complex and apo-enzyme reveal a significant hinged movement of the enzyme involving not only the loops of the structure, but also parts of the a/b barrel most intimately involved in cofactor binding.