
TypEx: A Type Based Approach to XML Stream Querying

George Russell
Department of Computer and

Information Science
University of Strathclyde

Glasgow, U.K.

george@cis.strath.ac.uk

Mathias Neumüller
Department of Computer and

Information Science
University of Strathclyde

Glasgow, U.K.

mathias@cis.strath.ac.uk

Richard Connor
Department of Computer and

Information Science
University of Strathclyde

Glasgow, U.K.

richard@cis.strath.ac.uk

ABSTRACT
We consider the topic of query evaluation over semistruc-
tured information streams, and XML data streams in par-
ticular. Streaming evaluation methods are necessarily event-
driven, which is in tension with high-level query models; in
general, the more expressive the query language, the harder
it is to translate queries into an event-based implementation
with finite resource bounds.

We consider an alternative model by introducing a two-
phase evaluation strategy. A query Q is decomposed into
an event driven primary filter query Q′, which incrementally
gathers relevant data from the input stream, and another
query Q′′ which consumes this data as it becomes avail-
able. Evaluation of Q(s) is then equivalent to Q′′(Q′(s)).
The importance of the separation is that it allows the first
phase Q′ to be expressed in a non-Turing complete algebra
which may therefore be generally amenable to event-based
interpretation. The second phase Q′′ may be expressed in
an arbitrary higher-order language, so long as its execution
takes no longer than the extraction of the next input in-
stance from the input stream.

In this paper a type algebra is used to express the first-
phase query. This builds on previous work, which shows
how traditional programming language types may be given
a semantics within XML, therefore allowing their projection
onto XML resources. A side-effect of this definition of pro-
jection is that instances of a type may be extracted in a
form available for computation within a traditional domain.
The use of type projection in this context also allows Q′′

to be statically typed according to the type filter used for
Q′, which itself may be deduced by inference over Q′′. A
mechanism for translating a type into a network of event
driven automata, which has the effect of gathering all data
captured by that type from a semistructured input stream,
is described. Although at an early stage of investigation, ini-
tial results suggest this approach provides a credible alter-

Copyright is held by the author/owner.

International Workshop on the Web and Databases (WebDB).

June 12-13, 2003, San Diego, California.

native to stream-based querying in at least some application
domains.

Categories and Subject Descriptors
H.2.4 [Database Management]: Languages—Query Lan-
guages; D.3.3 [Programming Languages]: Language Con-
structs and Features—Data Types and Structures

Keywords
Type projection, stream processing, query typing, language
integration, semistructured data

1. INTRODUCTION
The requirement for efficient, stream-based XML querying is
by now established. There are several applications of such
systems, notably in selective dissemination of information
(SDI) and publish / subscribe systems [1] and for very large
data environments and data integration [8]. Another mo-
tivation is the efficient transformation of streaming XML
data, in applications such as XSLT processing and contin-
uous data streams [9]. Such applications require processing
to occur in real time as data becomes available, rather than
after the end of the input stream is reached as in most XML
query models.

SAX1 provides a fully general XML stream-processing ab-
straction, giving the programmer an event-based interface
based on callbacks. This interface provides full real-time
streaming functionality; however the nature of the interface
makes programming challenging for many applications, as
conversion from the event stream to the logical structure of
the underlying data is entirely the burden of the program-
mer.

Given this difficulty, a number of authors have investigated
translation from a higher-level expressive form into an event-
based model, expressed most commonly as a deterministic
finite state automata (DFA) network [2, 7, 9, 11, 12]. Par-
tial translations from both XPath and XQuery have been
discussed, and while there are still open issues, significant
progress has been made. One of the major outstanding is-
sues however is the identification of the level of expression
which can be sensibly handled in this model. Both XPath
and XQuery contain expressions which can not usefully be
translated into a DFA model without compromising com-
putational thresholds underlying the purpose of the transla-

1http://www.saxproject.org

tions; the same of course is true for any single query language
with sufficient expressive power to handle any reasonable
range of queries.

We propose a significant departure from this methodology
which we show works well for certain classes of application.
The query is coded as a function in a Turing-complete pro-
gramming language, with the assumption that the execution
of this function will occur within acceptable bounds if its in-
put can be isolated and passed to it as a process separated
from the parsing of the input stream. This function could
represent the query in its entirety, but in this domain the
whole query is more likely to be represented by the repeated
application of the function to instances of its input as they
are extracted from the XML stream.

The function is typed according to its input, and this type
is used to generate a deterministic state automata based
input filter which extracts corresponding values from the
XML input stream. These values are then passed, as they
occur, to the query. In this way fully general queries can
proceed in parallel with the parsing of the input. This builds
on our previous work [5, 14, 15, 6, 10], in which we show
how traditional programming language types may be given
a semantics within XML, therefore allowing their extraction
from XML resources.

The method will only work well if the query function is short-
lived, and its type represents a significantly small subset
of the XML stream; however we believe there exist many
instances of this pattern. The main properties of the method
are as follows:

• only the type-based extraction requires to be trans-
lated into the event-based paradigm

• only the second part of the query requires to be ex-
pressed, as the filter can be automatically generated
from it

• the two phases of the execution can proceed in parallel

Compared with single-phase deterministic automata trans-
lations from XPath or XQuery, the method seems likely to
work relatively well for complex queries over core regular
data within a loosely structured stream, while it is likely
to work relatively badly for simple queries over data that
is inherently unstructured. The tradeoffs with respect to
simplicity of expression and efficiency are complex and re-
quire further investigation, but in this paper we have at
least shown credibility in these domains with respect to some
classes of application.

In more generality, not considered further in this paper, the
same basic two-part query framework may be used entirely
within the XML standards domain, by expressing the fil-
ter by a projection defined over XML Schema. Instances of
XML would then be generated by the first phase, allowing
the secondary part to be expressed in any XML query lan-
guage. One particularly interesting aspect of this is that,
if the entire data stream is known to be valid with respect
to a given schema, then the soundness of the filter may be

statically assessed, and furthermore user-level tools for gen-
erating it from the XML Schema stream description could
be envisaged.

2. A MOTIVATING EXAMPLE
For motivation, an example streamed application is coded
in Java using various alternative implementation techniques,
namely SAX, XPath, and TypEx, the system based on the
approach described. SAX only creates temporary data struc-
tures to report parsing events which need to be transferred
manually into the application specific data model for pro-
cessing. The XPath code uses an XPath expression to define
a superset of the required data, in conjunction with DOM
code to perform the required query; the TypEx code uses
a Java class definition to define a superset of the required
data, in conjunction with a method of that class to query it.
In the cases of XPath and TypEx the initial extraction may
be performed incrementally and processed in parallel with
the code that uses the extracted values, whereas in the SAX
application the entire processing must be performed within
the parsing callbacks.

The example is a news ticker application, which extracts
news items from an arbitrary XML stream. Schema infor-
mation of the expected stream is incomplete and restricted
to the relevant data. The application programmer knows
that there are item elements which contain at least two di-
rect child elements named title and description. Both these
items contain only textual content and can occur only once
within any item. This data may be embedded at any point
in the source and additional content may appear beneath
item elements. The application is to display the content of
these two fields as they are detected within an unbounded
stream of XML.

2.1 Parsing Event Based Model
An example of an approach in which the query is directly
contained in the application code is the event-based abstrac-
tion model used by SAX. Mappings between parsing events
and the data model used are spread over various callback
methods, making it hard to understand and thus maintain.
The mixture of selection and computation also increases the
coupling between user-specified computation and parsing
process and is thus undesirable.

Listing 1: The SAX handler for the news ticker

public class NewsHandler extends DefaultHandler {
private StringBuffer title , description ;
private Stack elements = new Stack();
public void characters(char[] ch,

5 int start , int length) {
if (elements.search(”item”) == 2) {

if (elements.search(” title ”) == 1)
title .append(ch, start , length);

if (elements.search(”description”) == 1)
10 description .append(ch, start , length);

}
}
public void startElement(String namespaceURI,

String localName, String qName, Attributes atts) {
15 elements.push(qName);

if (qName.equals(”item”)) {

description = new StringBuffer();
title = new StringBuffer();

}
20 }

public void endElement(String namespaceURI,
String localName, String qName) {

elements.pop();
if (qName.equals(”item”)

25 System.out.println(title +”\n”+ description);
}
public static void main(String[] args) {
SAXParser parser =
SAXParserFactory.newInstance().newSAXParser();

30 parser .parse(new URL(args[0]).openStream(),
new NewsHandler());

}
}

Listing 1 shows that the required state information is main-
tained by using a stack containing all opened tags (line 15).
String buffers are created once an opening item tag is found.
Upon occurrence of character data the top two elements of
the stack are checked. If they fit the structural constraints,
the content is appended to the relevant buffers. The con-
tent of these buffers is printed when the end of a news item
is detected. Note that this implementation does not verify
order, multiplicity or even existence of required fields, but
just checks that identified fields suffice the structural con-
straints. Other constraints would need to be checked using
either a more complicated handler or a partial schema val-
idation process, which is currently not part of any of the
relevant standards.

2.2 XPath/DOM Based Model
The combination of XPath [16] and DOM allows a different
approach. Programs specify the desired set of nodes using
a path expression, and operate over the results using tree
traversal code. XPath expressions are navigation expres-
sions over tree structured data which are sent to an exe-
cution engine in a similar fashion as embedded SQL state-
ments. Selection is mechanically performed by the system
and returns a collection of trees, requiring tree traversal code
in the user specified computation. Typically a superset of
the data required is returned because XPath returns the en-
tire subtrees rooted at the selected nodes, regardless of the
data requirements of the subsequent computation. However,
as there is no strong coupling between the two phases, it can-
not be guaranteed that the returned data actually satisfies
the computational needs.

Listing 2: The same application using XPath

public class BBCNewsXPath {
public static void main(String[] args){
DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

5 DocumentBuilder builder =
factory .newDocumentBuilder();

Node doc = builder.parse(
new InputSource(new URL (
args [0]). openStream()));

10 NodeList results =
XPathAPI.selectNodeList(doc,

”//item[description and child :: text ()] ”
+”[title and child :: text ()] ”
+”[count(title)=1]”

15 +”[count(description)=1]”);
for (int i=0; i<results.getLength(); i++) {
Node result = results .item(i);
Element aItem = (Element) result;
NodeList titles = aItem

20 .getElementsByTagName(”title”);
String title =
((Element) titles .item(0))
.getFirstChild (). getNodeValue();

NodeList descriptions = aItem
25 .getElementsByTagName(”description”);

String desc =
((Element) descriptions.item(0))
.getFirstChild (). getNodeValue();

System.out.println(title + ”\n” + desc);
30 }

}
}

The program shown in Listing 2 uses the single XPath state-
ment stretching from lines 12–15 to declare the navigational
steps required to select the relevant data. The XPath ex-
ecution engine returns a NodeList containing the selected
nodes (line 10). The loop starting in line 16 iterates through
this list and extracts the data from the relevant text nodes
using the DOM API, and in particular the method getEle-
mentsByTagName which selects nodes based on their name.
Structural checks upon the input format have been added to
the XPath query in Listing 2, which allows them to be omit-
ted from the result processing code which otherwise would
contain explicit structural checking. The XPath implemen-
tation used is not streaming, but this does not affect the
purpose of the example.

2.3 Type Projection Based Model
The approach suggested by this paper has been implemented
in the TypEx system. The extraction phase identifies data
that may be relevant for the query by means of a filter type
and binds this data to an instance of this type for use in the
second phase. Since the computation is specified in terms
of the filter type, the returned instances of this type will
always contain a superset of the information required.

Listing 3: The filter class item

public class item {
String title , description ;
public String toString() {

return title+”\n”+description;
5 }

}

In our example application, the class used to store and print
news items is also used as the filter type (Listing 3). This
defines the data extraction in terms of the host program-
ming language and acts as a data model for the following
computation, ensuring a match between the two phases and
a seamless integration with the language. The actual com-

Listing 4: The TypEx Newsticker

public class BBCNews implements Observer {
Extractor stories ;
public BBCNews() {
stories = new Extractor(item.class);

5 stories .addObserver(this);
}
public void parse(InputStream in) {
stories .parse(in);

}
10 public void update(Observable o, Object i) {

System.out.println((item) i);
}
public static void main(String[] args){
BBCNews p = new BBCNews();

15 p.parse(new URL(args[0]).openStream());
}

}

putation, i.e. the printing of the content is also defined by
this type. Listing 4 shows the usage of this filter. It creates
an Extractor parameterised by the type (line 4), which ex-
tracts item objects during parsing and passes them to the
observer for display.

3. TYPE BASED EXTRACTION
In this section we outline the translation of a core type
language into a network of co-operating, deterministic au-
tomata. The resulting network is capable of extracting val-
ues of those types.

The type language includes both record and list construc-
tors, but does not allow anonymous lists to occur as they
have no semantic projection in XML. In addition, lists can-
not occur at the top level, as this would be incongruous with
the purpose of the mechanism, which is to release typed data
as soon as possible. A grammar for the type language is
given below.

typedef ::= label : type
type ::= record | scalar
record ::= { label1: field 1, . . . , labeln: fieldn}
field ::= scalar | record | list [type]
scalar ::= int | string

A type expression is translated into a set of named compo-
nent types as shown by the following example:

p : {a : int , b : list [{d : int }], c : {d : int}}

is transformed into

p : T1

T1: {a: T2, b: list[T3], c: T3}
T2: int

T3: {d: T2}

Each type Ti in this representation is mapped to an automa-
ton, whose job is to extract an instance of that type from
the input stream and return it as a value. The topology

produced by this example is shown in Figure 1. The size of
the automata network equals the size of the corresponding
type graph plus one for the additional sink machine.

The root and sink machines always occur as single in-
stances; the others are generated according to the individual
type components. Each internal connection is a two-way
link, passing input events in one direction and results in
the other. Only one machine at a time actively processes
events; a machine become active when it receives an init()
event, and remains so until either a return() or fail() event
is passed back to its initiator. Non-active machines pass
events on to the currently active machine. Events are prop-
agated synchronously in that they are not passed to the
active machine until the previous event has been processed;
this avoids synchronicity problems with the return events
being passed back up the chain.

Entry
Root

T1
(record)

Sink
Machine

T3
(record)

T2
(int)

Instances
 of T1

Events

Figure 1: The example automata network

The following messages are defined: open(l), close(l), text(v),
init(l), return(v), and fail(). A parameter l stands for a la-
bel corresponding to an XML tag label, and a parameter v

stands for a value. open(l), close(l) and text(v) are events
corresponding to a simplified input stream, and correspond
to the textual form of the XML being processed. init(l), as
described, causes a machine to become active; its parame-
ter is a label which, when subsequently received within a
close(l) message, will cause it to pass control back to its
initiator. This is either by means of a return(v) message, in
the case it has been able to extract a value corresponding
to its type from the input stream, and by means of a fail()
message otherwise. There are four different classes of ma-
chines: entry, sink, scalar and record, as defined by the
following behaviours:

• Entry: discard every event until an open(l) occurs,
where l is the label corresponding to the name of the
top-level typedef. At this point, init(l) is passed on
to the machine corresponding to the type of the top-
level typedef, which then becomes the active machine.
Further events are passed to this machine until either a
return(v) or fail() is received from it. On a return(v),
the parameter v is passed on to the network’s receiver;
on fail(), no further action occurs.

• Sink: the purpose of this machine is to discard an
XML subtree, which cannot be of interest to the ex-
traction. On receipt of init(l), it becomes the active
machine: its only required function is to discard events

until the corresponding close(l) event is received, en-
suring that any contained subtrees using the same la-
bel l are also discarded. No value is returned.

• Scalar: on receipt of init(l), a scalar machine requires
the first event it receives to be a text(v) message, and
its second to be a close(l) message. Depending on
the particular scalar type, the string parameter v is
examined to ensure it is structurally compatible, and
if so is coerced and returned. Any other combination
of events causes the machine to pass a fail() event back
to its initiator.

• Record: a record machine starts with internal state
variables corresponding to each of the field names oc-
curring in its progenitor type description. For each
one, the value is initialised to undefined if the field is
a scalar or record type, and to an empty list if it is
a list type. These variables are used to build up the
state corresponding to the record value it attempts to
extract. It may receive text(v), open(l) and close(l)
events from its initiator:

– text(v): the event is discarded

– open(l): the behaviour depends on whether there
is an internal state variable corresponding to l,
and if so what its value is. If there is no internal
variable, an init(l) message is sent to the sink

machine. If there is a variable which is a list,
an init(l) message is passed to the machine cor-
responding to the field type; if this returns with
a value, it is appended to the list, otherwise no
action is taken. If there is a variable whose value
is defined, this results in termination with fail().
Finally, if there is a variable whose value is not
yet defined, an init(l) message is passed to the
machine corresponding to the field type; if this
returns with a result, it is assigned to the inter-
nal variable, otherwise no action is taken.

This behaviour corresponds to a structural sub-
typing approach to extracting the corresponding
data values in the XML whilst ignoring order fields
and any extra fields that are not pertinent to the
query.

– close(l): if all internal state fields are defined, a
record value based on them is constructed and re-
turned to the calling machine in a return(v) mes-
sage; otherwise, a fail() message is passed back.

4. IMPLEMENTATION
The automata networks within TypEx form the middle layer
of the system architecture. Below this layer an event handler
translates parsing events generated by an underlying XML
parser into automata events. Above the automata layer is
the transformation layer, which generates networks from fil-
ter specifications and transforms extracted data graphs into
instances of the specified type. The top layer is the program-
mer visible API, which allows the specification of an input
source and associated filter types. It allows multiple listen-
ers per filter and multiple filters per data stream, affording
a degree of parallelism in the query process.

Each automaton is implemented as a Java class. Automata
networks are generated using reflection to examine the field

types and names of filter types. Reflection is also used dur-
ing data instantiation process.

5. EXPERIMENTAL RESULTS
To determine the viability of our approach, we have pro-
cessed a more complex example query than the one discussed
in Section 2. The data set under consideration has been
generated using the XMark benchmark [13] scalable data
generation tool and describes auction site details containing
items for sale, persons (bidders and sellers) and some more
information not relevant for our purposes. In particular, we
have queried large XML files (up to 11GB in size) for people
(with attributes such as name, address, etc.). We compare
programs based on SAX, DOM XPath and TypEx both in
terms of the complexity of the code and their runtime per-
formance. The number of lines have been taken as a simple
measure of the complexity of the code (Table 1).

System Lines of Code Comment
Select Extract

SAX 150 Selection and extraction
DOM 43 cannot be separated.
XPath 1 39 Uses DOM extraction code.
TypEx 6 17

Table 1: Length of Query

System 1MB 10MB 15MB 30MB 100MB
DOM 1.73 147.0 326.0 1296 N/A
XPath 0.38 4.6 7.7 45 N/A
SAX 0.19 1.1 1.5 3 13
TypEx 0.43 3.6 5.6 10 21

Table 2: Length of Query Execution (s)

Table 1 supports the observation gained from the news ticker
example and illustrates the conciseness possible using the
TypEx approach. The SAX program, contains a mix of
high-level application code and low-level parsing callbacks
and results in an order of magnitude increase of code. DOM
and XPath approaches lie between these two extremes and
are almost identical because of their common tree traversal
code.

The SAX query execution time scales linearly with the size
of the input data and its memory usage depends only the
level of element nesting. DOM is unsuitable for stream-
ing due to its inherent whole document approach. As the
input size increases, the time taken to complete the query
increases more than linearly, while the memory usage in-
creases linearly. With an 100MB source file, the query fails
to complete due to an OutOfMemory error using a heap size
of 512MB. We were unable to obtain a complete implemen-
tation of XPath to operate upon streaming data. The imple-
mentation we used for this experiment, Xalan/J, is backed
by a incrementally built tree structure, and thus scales sim-
ilarly to a DOM implementation in space. It does not how-
ever, provide results in an incremental fashion and thus does
not allow a direct comparison with either SAX or TypEx.
TypEx, while slower to execute than the equivalent SAX
program also scales linearly with the size of the input data.
The memory requirements are determined by the size of the
extracted type, i.e. are independent of the size of the docu-
ment. We have used it to successfully query inputs of up to
11 GB in size.

6. RELATED WORK
To the best of our knowledge, this is the first attempt of
using types as filters in a two stage stream query process.
The requirements for stream processing have been identified
in [3] and elsewhere.

Much of the effort concentrates on implementing the XPath
[16] language over streams. A number of independent ef-
forts are proceeding, such as XMLTK [2], SPEX [11], and
XSQ [12]. Green et al. [7] describe the implementation of
an XPath subset using a lazily generated network of DFA
and provide a comparison with other XPath implementa-
tions over streams. The work concentrates on the construc-
tion of a single automata network representing a large num-
ber of XPath queries which are executed simultaneously.
Olteanu et al. [11] describe the translation of a subset of
XPath expression into equivalent expression using only for-
ward axis, which can then be efficiently processed by their
SPEX XPath system using a network of event driven au-
tomata. Finally the XSQ system [12] is based upon push-
down transducers with associated buffers and aims at com-
plete XPath support.

A more recent approach by Ludäscher et al. [9] describes
the implementation of the computationally complete query
language XQuery over streaming data, using transducer net-
works derived from a query expression. Their XSM system
optimises the derived network based on static analysis and
available schema information. Optimisation strategies used
may prove useful for our approach.

Type projection is introduced in [5] and formalised in [15].
Language integration with Java is described in [14] in more
depth, while its use within query languages for XML is also
outlined [10, 6].

7. CONCLUSIONS
We have outlined a novel mechanism which allows XML
stream queries to be decomposed into an extraction and
a computation phase over the extracted data based on a
single type description. While the concept requires further
investigation, it has a number of advantages for some classes
of application. In particular, it may allow the programmer
to use a higher-level, and therefore more succinct, query
without gravely affecting properties of efficiency. Queries
are formulated within the domain of the host language and
can thus be statically typed.

The mechanisms have been implemented and first results
show some promise. However the investigation is at an early
stage and a great deal of work remains to be done.

8. ACKNOWLEDGEMENTS
We would like to thank Fabio Simeoni, David Lievens, Steve
Neely and the anonymous referees for making useful sug-
gestions on the presentation of this work. It has been fi-
nancially supported by EPSRC (GR/M72265) and BBSRC
(17/BIO12052.) George Russell and Mathias Neumüller are
supported by PhD studentships funded by the University of
Strathclyde.

9. REFERENCES
[1] M. Altinel and M. J. Franklin. Efficient filtering of

XML documents for selective dissemination of
information. In A. E. Abbadi, et al., editors, VLDB
2000, pages 53–64, 2000. Morgan Kaufmann.

[2] I. Avila-Campillo, T. J. Green, et al. XMLTK: An
XML toolkit for scalable XML stream processing. In
PLAN-X: Programming Language Technologies for
XML, 2002.

[3] B. Babcock, S. Babu, and other. Models and issues in
data stream systems. In L. Popa, editor, PODS 2002,
pages 1–16, Madison, Wisconsin, USA, 2002. ACM.

[4] P. A. Bernstein, Y. E. Ioannidis, et al., editors.
Proceedings of the 28th International Conference on
Very Large Databases, Hong Kong, China, 2002.
Morgan Kaufmann.

[5] R. Connor, D. Lievens, et al. Extracting typed values
from XML data. In OOPSLA Workshop on Objects,
XML and Databases, 2001.

[6] R. Connor, D. Lievens, et al. Projector – a partially
typed language for querying XML. In PLAN-X:
Programming Language Technologies for XML, 2002.

[7] T. J. Green, G. Mikklau, et al. Processing XML
streams with deterministic automata. In D. Calvanese
et al., editors, ICDT 2003, volume 2572 of LNCS,
pages 173–189. Springer, 2002.

[8] T. Kiesling. Towards a streamed XPath evaluation.
Diplomarbeit, Universität München, 2002.

[9] B. Ludäscher, P. Mukhopadhyay, and
Y. Papakonstantinou. A transducer-based XML query
processor. In Bernstein et al. [4].

[10] P. Manghi, F. Simeoni, et al. Hybrid applications over
XML: Integrating the procedural and declarative
approaches. In Fourth International Workshop on
Web Information and Data Management (WIDM’02),
Virginia, USA, Nov 2002.

[11] D. Olteanu, T. Kiesling, and F. Bry. An evaluation of
regular path expressions with qualifiers against XML
streams. In ICDE 2003, Mar 2003.

[12] F. Peng and S. S. Chawathe. XPath queries on
streaming data. In SIGMOD 2003, 2003.

[13] A. R. Schmidt, F. Waas, et al. XMark: A benchmark
for XML data management. In Bernstein et al. [4],
pages 974 – 985.

[14] F. Simeoni, D. Lievens, et al. Language bindings to
XML. IEEE Internet Computing, 7(1), Jan/Feb 2003.

[15] F. Simeoni, P. Manghi, et al. An approach to
high-level language bindings to XML. Information &
Software Technology, 44(4):217–228, 2002.

[16] World Wide Web Consortium. XML Path Language
(XPath) Version 1.0, W3C recommendation 16
November 1999 edition, 1999.
http://www.w3.org/TR/1999/REC-xpath-19991116.

