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Abstract. We identify a new type of data integration problem that
arises in functional genomics research in the context of large-scale experi-
ments involving arrays, 2-dimensional protein gels and mass-spectrometry.
We explore the current practice of data analysis that involves repeated
web queries iterating over long lists of gene or protein names. We postu-
late a new approach to solve this problem, applicable to data sets stored
in XML format. We propose to discover data redundancies using an XML
index we construct and to remove them from the results returned by the
query. We combine XML indexing with queries carried out on top of re-
lational tables. We believe our approach could support semi-automated
data integration such as that required in the interpretation of large-scale
biological experiments.

1 Introduction

The field of functional genomics promises to provide an understanding of the cel-
lular processes that control development, health and disease. The advent of large-
scale laboratory techniques including sequencing, microarrays and proteomics
has revolutionised the discipline and allowed biologists to take a global view of
biological processes. A sequencing run®, a microarray experiment* or a 2-D pro-
tein gel® suddenly deliver a large amount of data that needs to be assessed with
relationship to a particular problem being investigated. Current data acquisi-
tion and processing methods that rely on web browsing and querying for single
genes of interest are no longer sufficient. A microarray experiment can yield a
list of 500 gene names, all possibly implicated in the mechanism of a biological
process or disease that is being investigated. Tools such as Sequence Retrieval
System (SRS)® [10] provide a means of executing a query over a range of data
sources but do not integrate the results. Keyword searching can be used to limit
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the range of results but still produces large numbers of links that need to be
investigated. The biologists we work with are able to identify lists of genes but
have not solved the problem of data and literature acquisition that would help
to place each gene in its context. The interpretation of gene expression and pro-
tein expression data requires data integration on a large scale. We believe that
a new generic approach to data integration is needed. We can no longer afford
to manually create new wrappers, mappings and views expressing the informa-
tion need of every biologist performing genome or proteome analysis. A generic
solution would be preferable. Since a significant number of biological databases
are available in XML format, we have the opportunity to use that format for
semi-automated data integration. We propose an XML data integration system
that can gather all available XML data for any gene of interest and present the
biologist with a digest of all known information, similar to GeneCards [16] but
not limited to the Homo sapiens species.

The eXtensible Markup Language, XML, is one of the alternative formats
used in biological data presentation. In particular, the SRS system handles XML
easily and provides tools for the indexing of such data. SRS does not however
integrate data, instead, integrated data views have to be crafted by skilled pro-
grammers. The biological users we know have to manually retrieve and integrate
data. It is our intention to provide a data integration service for such users.
We propose a different scenario. Our user is a biologist performing a large-scale
biological experiment. The experiment produces a list of gene or protein names
and our task is to find all available information about those data items from the
public web databases.

We believe that a gene- or protein-focused view of all biological databases can
satisfy the needs of a large number of researchers. An XML tree giving a summary
of all information relevant to a given gene or protein could be processed by a data
integration system and stored as a pre-processed summary. Each user would then
select from that summary a relevant subset of information. Creating an XML
tree for a gene can be done simplistically, by creating a root and attaching a
gene-specific subtree from each database to that root. However, this solution is
not satisfactory because the same data will be replicated in many subtrees. We
aim to integrate the data at the XML level while taking into account both the
data structure and content. We adopt ideas from the data mining community
where both the tree structure and content are considered. We combine this idea
with the use of database indexes that will make possible an approach similar to
data mining on very large data sets. By indexing we reduce the computational
complexity of the processing needed to find correspondences between different
paths in XML trees, and by using simple queries on all indexed data we can
develop well-founded mappings to be used to remove duplicated information.

Our work is based on the following assumptions and observations. We ob-
serve that biological databases are developed independently, and their XML
structures have various levels of nesting and often use disjoint vocabularies in
their tree structures. Because the data comes from various domains (for instance
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eukaryotic promoters, protein structures, genome maps), it is unlikely that au-
tomated matching of attribute names will allow us to merge the data. Each
biologist has different needs and may use any number of databases. It is conse-
quently impossible to prescribe how data should be merged and presented. On
the other hand, we expect a certain degree of order and data sharing between
different database trees. We assume shared database identifiers, unique IDs for
single records (because most databases started as flat files each entry will have
an ID) and large numbers of records of similar structure.

Our contributions are as follows. We identify a new type of data integra-
tion requirement. We provide a critique of existing data integration systems
and we propose the idea of item-based XML data integration. We propose an
index-based algorithm for redundancy removal and an application architecture
to support querying. The rest of the paper follows this order and closes with a
discussion and conclusions.

2 Searching On-Line Databases

Affymetrix Data Mining Tool

PubMed
Netaffx
I PMID 11251179
M:w GenomI Informatics PMID %1 26490 *

ScienceDirect
EMBL-EBI* LocusLink Ensembl

f

SRS

Fig. 1. Webpages visited during searching. * indicates sites that contained material
that the researcher found interesting

Biologists have a variety of aims when searching on-line databases. We con-
ducted extended interviews with four research groups that use microarray and
proteomics technologies. We observed the process of data analysis performed
as a series of web queries. We gathered logs of web activity using Muffin® and
focused on web queries and data navigation paths.

2.1 Study 1, Mouse Breast Development as a Model for Cancer

Study 1 aims to understand gene expression in mouse mammary gland develop-
ment and involution. A series of microarray experiments has led to the identifi-
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cation of 400 gene names. All genes should be studied and potential candidates
identified on the basis of a known role in cancer and mammary gland develop-
ment. The researcher reported spending six months characterising 100 genes by
web browsing. He would like to be able to study the remaining 300 genes. The
current practice is to start with the Affymetrix database? and for each probe
name identified in the experiment, to find the corresponding gene. The link to
the gene is followed, finally leading to PubMed articles'®. If the article title cor-
relates with the research interest of Study 1, it will be downloaded. The sequence
of a typical search is shown in Figure 1. Leading on from the Affymetrix Data
Mining Tool, the researcher found useful material in EMBL, but ultimately re-
sorted to PubMed to issue a query for the gene name listed in the Affymetrix
database. PubMed produced two articles that were of interest, one of which was
pursued through to Science Direct'!, and ultimately printed out for subsequent
study. This process was followed for all 100 genes and the researcher would like
to be able to automate it. Moreover, he would like an additional facility, that of
grouping the articles according to the number of the gene names in the query
set they refer to. For instance, articles could be presented in a ranked order with
those shown first that mention the greatest number of gene names out of the
initial query set.

2.2 Study 2, Search for Candidate Genes for Hypertension

Study 2, working on a rat model of hypertension, wants to identify the exact
genome location for 400 genes and to find supplementary information about
similar genes in mouse and human. The web search using Ensembl'2, NCBI'3,
MGD™ and RGD'® consumed a significant amount of time, simply to find gene
locations. The identification of up-to-date comparative maps of human, mouse
and rat for a subset of the genes located on one rat chromosome was also time-
consuming. The search started from the Affymetrix database and the initial list
of gene positions was gathered by web searching. The list was complemented
with additional probe positions calculated by running a large-scale sequence
comparison where probes from the Affymetrix database were compared to the
rat genome.

2.3 Study 3, Rat Model of Schizophrenia

Study 3 is characterising 250 genes that are differentially expressed in a rat model
of schizophrenia. We estimate that a full analysis of those genes will consume
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several months. The Affymetrix database of probe names is the starting point.
Web queries on probe sequences lead the researcher to the DNA sequence of the
rat gene or its human or mouse homologue. Those target sequences will then
be used to design laboratory tests and relevant publications will be sought in
PubMed and downloaded.

2.4 Study 4, Trypanosoma brucei Proteins

Study 4 is characterising the proteome of Trypanosoma brucei by 2-D gel elec-
trophoresis [8] and mass spectrometry. Mass spectrometry-based protein iden-
tification is based on sequence searching. For each protein similar to the one
observed on a 2-D gel, the study will want to gather information from the web,
possibly extending to known publications, predicted genes, protein structures
or protein motifs. Correlation with any published experimental data, including
microarrays, would be beneficial to the study.

3 Existing Integrative Tools

3.1 Entrez

Entrez is possibly the most popular biological query system!®. It offers a query
interface which allows the biologist to distribute the query over all of Entrez
databases. However, there is no further data integration. Query results list each
of the underlying data sources together with the corresponding number of hits in
each database. Clicking on any of the databases which show a match will deliver
a list of links to data items stored in each database.

3.2 Sequence Retrieval System (SRS)

SRS is a warehousing and indexing system [10]. The system regularly downloads
flat files and XML databases during low usage periods. Indexes are constructed
in order to support queries over a number of data sources. Relational databases
are not mirrored but their query facilities are captured in such a fashion that
the databases can be queried effectively over the Internet. A user can select a
set of target databases and issue a query spanning a selection of data sources.
The query is then sent to remote relational databases and to the local flat files
and XML data sources. The results are then brought together for the user. The
results are presented as web pages of links or tables of data. Figure 2 shows an
example result set.

6 www.ncbi.nlm.nih.gov/Entrez/
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Fig. 2. SRS nucleotide database query result for socs3

3.3 GeneCards

The information content of GeneCards [16] focuses on the human genome. Data
is integrated either by establishing local caches or by executing queries against
on-line databases. Local caches are held in flat file format although this is cur-
rently being migrated to XML. Data is integrated from around 50 sources in-
cluding Swiss-Prot, OMIM, Ensembl and LocusLink. The search engine removes
redundancy and presents a digest of the information extracted. The HUGO
database is used to identify the aliases of a particular gene. The results page
presents a synopsis of the function of the gene and also a link to PubMed to
allow the identification of literature that describes the gene. Source articles are
not directly referenced on the results page but a variety of links (in addition to
PubMed) are provided that lead to publications.

3.4 MedMiner

Medminer [17] is a text mining tool. It filters article abstracts and presents
the most relevant portions. It consists of three components: the facility that
queries web databases, the text filtering engine and the user interface. PubMed
and GeneCards are used by MedMiner as information sources. The GeneCards
query is used to return genes that are relevant to the user. The user can then
select one of those genes for inclusion in a PubMed query. Arguments can be
added to the PubMed query to initiate the filtering process. The abstracts of
the returned articles are broken into sentences and each sentence is tested to
see whether it conforms to the relevance criterion. The latter is true when the
sentence contains the query arguments and one of the MedMiner keywords. These
keywords are truncated terms associated with biological processes. When the
user wishes to study the genes associated with a certain phenomenon, the co-
occurrence of a gene identifier with a phenomenon relevant term in the abstract



of an article increases the possibility that this article is an important one. After
the text mining has been concluded, the citations that pass the relevance filter are
grouped according to the keywords they contain. MedMiner, instead of showing
the whole article abstract, displays only the sentence found to be relevant, with
the keywords and the query argument, highlighted. The use of keywords as the
article relevance metric runs the risk of high false negatives, especially if the
keywords have not been wisely selected and they do not cover all the aspects
of a certain phenomenon or process. A potential limitation is that relationships
between keywords and gene identifiers that span multiple sentences will not be
picked up. The choice of displaying only the relevant sentence instead of the
abstract itself, can result in significant time savings. However there is a trade off
with the possibility that important pieces of information existing in the rest of
the abstract will never be displayed.

3.5 Limitations of Existing Tools

GeneCards is specific to the human genome and does not cover mouse, rat, or
other organisms. MedMiner inherits the same weakness. The GeneCards system
is based on hard-coded schema mappings and is not easily extended to add new
data resources, or new XML files acquired from laboratory equipment or from
collaborators. The approach is not flexible or scalable, however it represents a
significant step in data integration methods. In fact, an approach that combines
both literature and database resources and is extensible to any species of interest
is required. Ideally, a PubMed abstract could be co-indexed with terms found
in traditional databases to achieve an integration of textual, experimental and
other annotation data present in public repositories. Further to that, queries
over sequence data should be part of the data integration system allowing the
integration of textual, database and sequence data to be even more effective.

4 Structural Conflicts in Data

The significance of XML in the integration of biological databases has been
recognised for some time [1]. Some databases, such as Swiss-Prot, are avail-
able for download in XML format whereas other systems such as PubMed are
able to return the results of queries as XML. The increasing conformance to
the XML standard will help with the outstanding issues of integration between
heterogeneous databases. Significant difficulties will however remain as a result
of the current divergence in data design and the expected continuation of this
divergence. Figures 3 and 4 show parts of the XML trees for the Swiss-Prot
database and queries returned from PubMed. The gene name in Swiss-Prot is
found by following the path: sptr/entry/reference/gene/name. There is no equiv-
alent path in PubMed, but the same name may be found in an abstract, by fol-
lowing the path: PubMedArticleSet/PubMedArticle/MedlineCitation/Article/-
Abstract/AbstractText. There is also another connection between the two trees.
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Fig. 4. Tree structure for the Swiss-Prot database. Attributes associated with tag
names are bracketed

A Swiss-Prot entry records a PubMed article as a leaf on the path sptr/-
entry /reference/citation/dbReference and the key used by Swiss-Prot is the key
present in the PubMed tree reachable via PubMedArticleSet /PubMedArticle/-
MedlineCitation/PMID. It can clearly be seen that the two structures contain
several incompatibilities. Although there are some matches between the struc-
tures at the level of tag names (eg authorList) there are many instances of data
items that contain common semantics but are represented by varying structures.
Dates in Swiss-Prot are represented by a single string giving the month and year
whereas in PubMed they are represented by a sub-tree. Attributes in Swiss-Prot
contain equivalent semantic content that is held by tags and their values in
PubMed.



5 XML Result Construction

SEARCH for gene@in Proteins, PubMed and Ensembl

Prgteins PubMed Ensembl
p4 %

protein names: p1, p2, p3, p4
articles: a1, a2, a3, a4
genes: g1, g2, g3, g4

Fig. 5. A schematic view of data querying and integration using XML trees

The four biological studies we reported on are characterised by the use of a
variety of databases that are manipulated using web interfaces, most of which
offer a simple query modality and return the result as a mixture of textual in-
formation and web links. The starting point of the search is the result from
a laboratory experiment. In the microarray context it is a list of probe names
and in proteomics it is a list of peptide masses delivered by a mass spec in-
strument. In both cases the researchers enter their query in one of the available
interfaces and follow a list of links returned by the query. The resulting data
returned from each of those queries represents a subtree of an XML tree for each
database being queried. Figure 5 shows a query for a gene gf which returns two
items p1, p2 from a protein database, an article a2 from PubMed and a gene g1
from Ensembl. Conceptually, all the information returned by those queries (or
obtained by following the links between databases), represents a union of three
XML subtrees. These subtrees can be brought together, by adding a root and
attaching the subtrees to it. We believe that we could build such XML trees
for each gene of interest. This approach would go further than the SRS system
which presents the user with a list of items. One of the difficulties the user has



with SRS is that the data returned from the queries is presented as a sequence
of items, rather than integrated in such a way as to present a unified result.
This forces the researcher to follow the links, save the web pages and then deal
with a large body of heterogenous data that contains duplication and is not
ordered in a meaningful way. We want to take advantage of SRS, and extend it
to reconcile the results returned from a number of databases. We will find data
repetitions and remove them first. The next step will be to provide the facility to
select the information in the tree according to semantic criteria, so that the user
interested in protein structures gets the structure information and a user inter-
ested in gene localisation gets a part of the XML tree showing gene locations.
This grouping can be performed by placing each source database into a general
category according to the information it stores. This is similar to the grouping
of the databases indexed by the SRS at EBI'7. Additionally, if a user wants to
work with a list of genes, clustering operations could be carried out to highlight
the genes that share subtrees of data. Finally, we need to think how to present
this information in a way that supports the understanding of this complex data.
This last issue remains outside the scope of this work.

6 XML Indexing and Data Integration

A high-level overview of database integration techniques is provided by Gar-
cia-Molina and colleagues [6] who distinguish between federation, warehousing
and mediation. In the biological arena, NCBI databases are a federation where
the sources are independent, but call on one another to supply additional in-
formation. The second approach, warehousing, requires constructing local copies
of relevant databases. SRS is a warehousing system that keeps data fresh by
downloading new information overnight and re-indexing it. Lastly, mediation is
the use of software components that support queries over data sources using
various storage formats and schemas. Discovery Link [10] is a mediation system
that distributes relational queries and brings the results together. Warehousing
is assumed to provide more efficient queries, because the dependence on external
servers and the volume of internet traffic is reduced. However, warehousing or
mediation do not automatically integrate data. To integrate data, one needs to
write complex queries, and none of the tools reviewed in Section 3 offer a query
facility that could be used by a biologist who does not understand the semantics
and syntax of the underlying data sources.

There are two facets to data integration. One is the integration of schemas
and the other the integration of data values. So far, schema integration has
received the most attention and recent reviews of schema matching have been
conducted by Rahm and Bernstein [15] and Do and colleagues [3]. Assuming that
one-to-one schema mappings can be generated, there is no accepted way to store
them, manipulate them or to merge more than 2 schemas [12], unless they cover
the same or very similar data [7]. Current work in the area of schema mapping
does not concern itself with data values. However, there have been attempts to

17 grs.ebi.ac.uk



include data values in query view definition, most recently by Yan and colleagues
[18].

Wrapping and mediation systems abstract from data values. This is partly
predicated by the fact that they are designed to perform lazy access to data.
Example systems include Bio-Kleisli, K2, Tambis, Discovery Link and OPM
[10]. XML based approaches in this area focus on query languages and schema
transformations [11,15,13,14, 5].

Recent work in machine learning (ML) is beginning to address the use of
data values in data integration. Kurgan and co-workers [9] performed ML on
XML tags but did not consider all the data values stored in the tree. Chua and
co-workers [2] performed relational data integration via attribute data matching,
assuming the knowledge of entity matches. The strength of the method lies in
the identification of a variety of statistical tests that are applied in attribute
value matching. The method is of interest and we are planning to test it in
XML data integration, by applying it to leaves that cannot be matched using
relational methods. Doan et al. [4] use ML in concept matching. They match
pairs of ontologies, which include data values stored in tree leaves. Their system
uses a subset of data values to achieve concept matching and takes into account
constraints, neighbourhoods of nodes, data paths and heuristics. Despite the
progress reported in ML, we believe that current ML approaches suffer from
several drawbacks. They can only match a pair of schemas at a time. They
use only some of the data because the matching process entails an exhaustive
comparison of all attributes or nodes, which leads to a combinatorial explosion
of matching activity. We believe that ML could be applied as a last step in
data matching and should be supported by indexing, in order to contain the
combinatorial explosion of matching.

7 Integrating Data for One Gene or Protein

The semantics of XML data rest both in the tree structure and in the leaves. We
intend to benefit from both types of information. To encode the tree structure,
we index all paths, including the leafs. When the data is indexed, each leaf value
can be examined in turn, to see if it is a candidate for matching (redundancy
removal). For each leaf value we check how many times it occurs in the data,
and count how many distinct paths lead to it. Groups of leaves that share the
same paths are immediate candidates for path merging if they come from dis-
tinct databases. If a leaf is reachable via two distinct paths in one database,
the semantics of those paths need to be examined either automatically (by algo-
rithms) or with expert help. For any two matching paths, as identified by shared
leaf sets, we can also check the immediate leaf neighbourhood to identify shared
subtrees. We now outline some of the queries to use in data integration.

The simplest case is the same leaf being reachable by two different paths in
two databases. This can be formalised as paths DB1/p1/al/leafl and DB2/p2/
a2/leaf1, which can be merged given a significant number of leaves that share
two such patterns. The case of matching leaves in the same database, which



needs further disambiguation can be expressed as DB1/p1/al/leaf! and DB1/
p2/a2/leaf1. Shared subtrees can be captured as paths that share leaves and pre-
fixes, i.e. DB1/p1/al/leafl and DB1/p1/a2/leaf?, matching the pair consisting
of DB2/p3/a3/leafl and DB2/p3/a4/leaf?, again based on a significant number
of subtrees sharing the pattern. A further step would be to explore paths of
type DB1/p1/al/leafl, DB2/p2/a2/leaf5, DB2/p2/a2/leaf6 where leafl = leaf5
+ leaf6 (+ expresses concatenation), in order to identify trees that split longer
strings into multiple leaves. Finally, linguistic data mining could be performed
on leaves to identify matches that are not exact. We are planning to use tech-
niques similar to those described by [12,4, 2].

The analysis of leaf values assumes that such values are indexed with the
paths leading to them. We propose to use a relational representation that will
enable the identification of shared leaf sets.

8 The Indexing Algorithm

Database names are stored in a relation DB(i, DBname). Each record in a
database has a Key stored in a relation Key(j, Keyname). Tags are recorded
in a relation Tag(k, Tagname). XML paths and their components, excluding the
leaves, are indexed in relation Path(l, k, depth) where [ is the path ID, k is the
tag ID and depth is the distance of the tag in the path from the root. Text con-
tained in the leaves is stored in a relation Leaf(m, Leaftext) and the relationship
between the database i, key j, path [ and leaf m, with leaf order order within
a given record is expressed as Data(i, j, I, m, order). The proposed index can
be built in one text traversal, using relational technology and memory-resident
tries. As the XML data is traversed, it is written line by line to the database,
with appropriate tables being updated to reflect the incoming data. We will use
memory-resident tries to store tags, keys, paths and leaves, with the relevant
identifiers of each entry kept in the tries to avoid database lookups during the
indexing phase.

The complexity of building the index can be expressed in relationship to the
length of the text n. It is O(nlogn) because the average tree height is logn.
The creation of new integer identities for tokens like paths, keys, leaves, etc. is
done in logarithmic time because it requires one lookup of the last integer used
in each domain (constant time) and one traversal from the trie root to a leaf.

9 Application Architecture

The process of data integration required by functional genomics consists of four
phases. In Phase 1 an initial list of gene names is produced. This list can be
downloaded from the Affymetrix database, which maps probe names to gene
names. Alternatively, a search program like Mascot'®, which accepts a list of
peptide masses as input and produces a list of matching proteins, can provide the

'8 www.matrixscience.com/
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protein names. In Phase 2 the query is expanded to add a list of synonyms to each
gene or protein name. We will adopt the solution used by the GeneCards which
uses the HUGO database of gene names to expand searches with gene synonyms,
but we will use synonym tables for the human, mouse and rat genomes. In Phase
3 a query is issued to the SRS system and links to individual database entries
from several databases are returned. Results are returned from these databases
either as objects or XML trees. All structures are converted to the common
XML format prior to reconciliation, and added to the index. A local repository is
used to store XML structures. In Phase 4 the data are integrated and delivered
to the user. It is possible to carry out all four phases in the background and
prepare a daily up-to-date digest of information for all genes of interest. When
a user poses a query, the pre-processed results for each gene are brought in and
further operations involving the selection of a subset of data relevant to the
particular user can be performed. Figure 6 captures our system architecture for
data integration.

10 Discussion, Conclusions and Further Work

We believe we have captured a new type of user requirement in the area of
biological database integration. This requirement consists of the need to acquire
all relevant data about a list of gene or protein names produced by a large scale
experiment. The further part of this requirement is to remove redundancies in the
data and to allow for selection and clustering of the results. This requirement is
hard to satisfy using either schema matching or manual data search approaches.
We sketch out how this requirement could be met with a new approach to XML
data integration.



To our knowledge none of the existing approaches to XML data integration
has proposed to index the data leaves and examine the relationships between
leaf values in the context of the paths present in the tree. Similarly, we have not
seen any accounts of the use of data indexes in machine learning approaches to
data integration. We propose to use a path and leaf index that can be built in
O(nlogn) time for a dataset of size n. The index can then be traversed with re-
lational queries to identify leaf matches and subtree matches. Additionally, data
mining can be carried out on leaf sets to identify opportunities for redundancy
removal.

We propose to implement the system as an added feature on top of the
SRS system which will mirror a variety of databases. The databases have to
be grouped using a simple ontology of data coverage, similar to the current
SRS arrangement. The SRS system will be enhanced with an indexing facility
for all XML paths and a data mining facility that will reduce data duplication
within XML trees for each gene of interest. The data will be filtered according to
the database coverage criteria, possibly clustered with regard to genes that share
publications and sequence data and presented to the user. The issues of clustering
and data visualisation are outside this proposal and will achieve attention in the
future.

We are implementing the system we proposed in order to test the viability of
our approach. The algorithms we sketched out need significant refinement and
the system architecture needs to be drawn in more detail. We will store a subset
of SRS data and test our ideas in the context of mouse, rat and human genomes.
We will co-index experimental data produced by the biologists and present an
integrated view of the external and private data sources.

We conclude that we have identified a new data integration requirement that
arises in functional genomics research. We assessed the existing tools and ap-
proaches in this area and proposed a new approach that might contribute to the
discussion on XML data integration and possibly lead to a better understanding
of the problems of automated data integration. We are currently implementing
a system prototype and will evaluate our approach with significant amounts of
data.
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