A MODEL FOR QUERYING SEMISTRUCTURED DATA THROUGH THE EXPLOITATION

OF REGULAR SUB-STRUCTURES

Mathias Neumiiller and John N. Wilson

Department of Computer and Information Science, University of Strathclyde, Glasgow G1 1XH

Key words to describe the work: Semistructured Data, Query Processing, Structure Mining, Data Optimisation

Key Results: Multiple techniques for querying semistructured data are based on the principle of identifying structured sub-sets of the data,
which are relevant to a specific class of queries. These can be exposed using appropriate techniques.

How does the work advance the state-of-the-art?: Definition of a common model for query optimisation

Motivation (problems addressed): Efficient querying of semistructured data, especially XML data in web applications

Introduction and Model
Much research has been undertaken in order to speed
up the processing of semistructured data in general
and XML in particular. Many approaches for
storage, compression, indexing and querying exist,
e.g. [D El] We do not present yet another such
algorithm but a unifying model in which these
algorithm can be understood. The key idea behind
this research is the assumption, that most practical
queries are based on a particular pattern of data that
can be deduced from the query and which can then
be captured using a regular structure amendable to
efficient processing techniques.

To aid understanding, we divide the problem of

query optimisation into five distinct steps, which are

presented in Figure 1 and described below:

1. Design of an index for a particular query
class: Given a particular query pattern or class,
indices can be devised, which support easy
evaluation. If the index is covering, we can even
dispose of the original data and resolve the query
entirely using against the index.

2. Calculation of a clustering based on the index:
The data, if seen as a data graph, can now be
clustered into equivalence classes based on the
index. The resulting graph has only one node per
equivalence class, i.e. combines nodes of the data
graph, which cannot be distinguished by any
query over the index, leading to a simplification
of the structure.

3. Exposing instance specific structure: This
clustering itself exposes typical structures in the
data instance, i.e. from all possible structures
governed by the query pattern only those are
materialised that occur in the specific data
instance. This forms an instance specific schema,
which can be used for data exploration and query
formulation, e.g. for querying by example.

4. Deriving data organisation: The structures
discovered can also be used to group the data
content, i.e. the atomic data associated with the
leaf nodes, into syntactically and semantically
homogeneous domains. Note that the semantic is
indirectly dependant on the class of queries, i.e.
the computation to be performed. This results in a
physical data representation, which is appropriate
with respect to the class of queries and specific
data instance.

5. Generation of query execution plan: Based on
the generated data organisation, specific queries
of the general class can be evaluated efficiently.
This last step consists of finding algorithm,
which makes use of the partial pre-computation,
which has been achieved by the previous data
reorganisation.

Not all parts of this problem can be described in

detail here. We will, however, illustrate the approach

using a simple class of queries, in this case simple
node queries with data predicates, and also

investigate step four and five in further detail for a

more general class of queries.

Semistructured
Data Instance

Query Class

Index

Clustering
Execution Plan

Data Organisation +—— Regular Patterns

Figure 1: Query optimisation cycle

2) bib

— T

book paper paper

NN N

author title author author title author title

al tl al a2 2 a2 t3

b) bib ¢)

N

book paoer paper ©
/N Y\ /N E

aQ

£

author title author title author title
al tl al 2 al g
a2 13 ®

Figure 2: a) Data graph instance, b) forward bisimulation graph, and c) twig query

Simple Value Predicate Queries

For the sake of simplicity we will assume an almost
trivial class of queries. We are interested to ask for
nodes with a specific name containing a particular
piece of atomic information, i.e. the path query
pattern //$label$/text()=$content$, where Slabel$
and Scontent$ are variables. We need a two-
dimensional index I(label, content), which indexes
all nodes with have atomic context. Note that the
resulting structural clustering is partial and non-
overlapping in this case, i.e. every node of the data
graph is mapped to either zero or one index nodes.
This simple structure will only show existing label
names as domains. Within these domains, only those
data content which can be found below such a node
in the source, will be stored. The physical data
storage in this case can be realised in many ways,
most easily as a two-dimensional sorted list.
Querying is than as easy as executing a binary
search over this list, in which a number of node
identities can be stored and returned.

Twig Queries and Branching Path Expressions
We will now show how to use a similar approach on
a more complex class of queries, in this case twig
queries with value predicates, a subset of branching
path expressions as described by Kaushik et al. [D.
Figure 2 shows a simple example. Due to the higher
expressiveness of the language, we cannot describe
the derivation of a covering index here, but refer to
their paper on this topic, which deals with the
general query class. Here we will primarily deal with
the step four and five described above.

Kaushik et al. describes the generation of an index
graph, which is based on bisimilarity of the structure
of a graph. Our restriction to branching path
expressions means that we can restrict the query
operations and thus the index to the downward axis,

i.e. base the index on forward bisimilarity alone.
Their work and implementation solely deals with
structural queries, thus excluding leaf node textual
data. We have included this data in dictionaries at
leaf node level and implemented a simple top-down
query execution strategy. Note that due to the
inclusion of leaf data, the index is no longer
covering and we must validate the candidate set
generated by querying the index graph using the data
graph. Because of the used clustering, we will have
to look at less data than if we had evaluating the
query over the entire data set. Furthermore we know
the structure of the candidate set, which can be used
for optimisation purposes, like executing the
validation in a typed environment.

Conclusions and Outlook

We have presented a model capable of describing
query optimisation techniques developed for the
processing of semistructured data. We believe that it
is general enough to describe a significant number of
existing techniques, and have given supporting
evidence for two examples. The model is based
around the assumption that the core to query
optimisation is based on identifying regular
structures in a semistructured dataset, which account
for most of the data volume.

We have yet to prove under which condition our
approach holds, and investigate the performance
implications of our thesis. To this end we are
working on a flexible experimental system that can
be used to test various optimisation techniques in a
common framework.

References
1. Buneman, Grohe, and Koch. Path queries on
compressed XML. In Proc. of VLDB, 2003.
2. Kaushik, Bohannon, et al. Covering Indexes for
Branching Path Queries, In Proc. of SIGMOD, 2002

