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Abstract  

Several analytical models of fully adaptive routing have 

recently been proposed for k-ary n-cubes and hypercube 

networks under the uniform traffic pattern. Although, 

hypercube is a special case of k-ary n-cubes topology, the 

modeling approach for hypercube is more accurate than k-

ary n-cubes due to its simpler structure. This paper 

proposes a general analytical model to predict message 

latency in wormhole-routed k-ary n-cubes with fully 

adaptive routing that uses a similar modeling approach to 

hypercube. The analysis focuses Duato�s fully adaptive 

routing algorithm [12], which is widely accepted as the 

most general algorithm for achieving adaptivity in 

wormhole-routed networks while allowing for an efficient 

router implementation. The proposed model is general 

enough that it can be used for hypercube and other fully 

adaptive routing algorithms. 

1. Introduction 

It is widely recognised that one of the critical components 

of a multicomputer is the interconnection network used to 

connect the processing elements together.  Most current 

multicomputers [6, 15, 22, 24, 25] employ k-ary n-cubes 

for low-latency and high-bandwidth inter-processor 

communication. The two most popular instances of k-ary 

n-cubes are the hypercube (where k=2) and the torus 

(where n=2). The former has been employed in 

multicomputers such as the N-Cube [22] and iPSC/2 [25] 

while the latter has been adopted in machines like the J-

machine [24], CRAY T3E [6] and CRAY T3D [15].  

Modern parallel routers significantly reduce average 

latency by using wormhole switching [7]. Wormhole is a 

switching strategy that divides each packet in elementary 

units called flits, each of a few bytes for transmission and 

flow control, and advances each flit as soon as it arrives at 

a node. The header flit (containing routing information) 

governs the route and the remaining data flits follow it in 

a pipelined fashion. If a channel transmits the header of a 

message, it must transmit all the remaining flits of the 

same message before transmitting flits of another 

message. Once the header is blocked, the data flits are 

blocked in-situ. Wormhole is attractive because it reduces 

the latency of message delivery compared to store and 

forward and requires only a few flit buffers per node. 

Network throughput of wormhole routed networks can be 

increased by organizing the flit buffers associated with 

each physical channel into several virtual channels [9]. 

These virtual channels are allocated independently to 

different packets and compete with each other for the 

physical bandwidth. This decoupling allows active 

messages to pass blocked messages using network 

bandwidth that would otherwise be wasted.  

Most interconnection networks including k-ary n-

cubes provide multiple physical paths for routing a 

message between two given nodes. This introduces the 

problem of choosing a route between many alternatives. 

Many  practical multicomputers [15, 24] have adopted 

deterministic routing where messages with the same 

source and destination addresses always take the same 

network path. This form of routing has been popular 

because it requires a simple deadlock-avoidance 

algorithm, resulting in a simple router implementation. 

However, messages cannot use alternative paths to avoid 

congested channels, and thus reduce their latency. Fully-

adaptive routing has often been suggested to overcome 

this limitation by enabling messages to explore all 

available paths. Several authors like Duato [12], Lin et al 

[20], and Su and Shin [29] have proposed fully-adaptive 

routing algorithms, which can achieve deadlock-freedom 

with a minimal requirement for virtual channels, allowing 

for an efficient router implementation. 

Analytical models of deterministic routing in 

common wormhole-routed networks including the k-ary 

n-cube have been widely reported in the literature [2, 4, 5, 
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11, 14, 17]. Several researchers have recently proposed 

analytical models of fully-adaptive routing under the 

uniform traffic pattern [4, 26, 28]. For instance, Boura et 

al [4] have proposed a model of fully-adaptive routing in 

the hypercube. The authors in [26, 28] have described 

recently models for the high-radix k-ary n-cubes.  

The most difficult part in developing any analytical 

model of adaptive routing is the computation of the 

probability of message blocking at a given router due to 

the number of combinations that have to be considered 

when enumerating the number of paths that a message 

may have used to reach its current position in the 

network. The problem is further exacerbated when the 

network dimensionality increases as the number of 

alternative paths increases. The model in [28] computes 

the exact expressions for the probability of message 

blocking at a given router by considering all the possible 

paths that enable a message to cross from its source to its 

current position in the network. However, the model is 

very time consuming due to recursive calculations of 

message blocking for each node in each iteration of 

message latency calculation. This paper proposes an 

alternative analytical model for computing the mean 

message latency in k-ary n-cubes with fully-adaptive 

routing. The derivation of the model is similar to the 

hypercube model presented in [4] and is general that can 

be used for k-ary n-cubes and hypercubes. 

As in previous similar studies [4, 26, 28], the present 

analysis uses Duato�s fully adaptive routing algorithm 

[12]. This form of routing is widely accepted as one of the 

most general fully-adaptive routing algorithm for 

wormhole-routed networks, leading to an efficient router 

implementation. The Cray T3E [6] and the reliable router 

[10] are two examples of recent practical systems that 

have adopted Duato�s routing algorithm. However, the 

modelling approach can be easily adopted by other fully-

adaptive routing algorithms [e.g. 3, 18, 21]. 

The rest of the paper is organised as follows. Section 

2 reviews some definitions and background that will be 

useful for the subsequent sections. Section 3 present the 

analytical model and finally, section 5 concludes this 

study.  

2. Preliminaries 

The unidirectional k-ary n-cube, where k is referred to as 

the radix and n as the dimension, has N=kn nodes, 

arranged in n dimensions, with k nodes per dimension. 

Each node can be identified by an n-digit radix k address 

(a1, a2 ,�, an).. The ith digit of the address vector, ai, 

represents the node position in the ith dimension. Node 

with address (a1, a2 ,�,an) is linke to node (b1,b2 ,�,bn) if 

and only if there exists i, )1( ni ≤≤ , such that ai =(bi 

+1) mod k and aj = bj for ; i  j. Thus, each 

node is connected to a neighbouring node in each 

dimension.  

nj ≤≤1 ≠

Each node consists of a processing element (PE) and 

switching element (SE) or route. The PE contains a 

processor and some local memory. The router has )1( +n  

input and )1( +n  output channels. A node is connected to 

its neighboring nodes through n inputs and n output 

channels in a unidirectional k-ary n-cube. The remaining 

channels are used by the PE to inject/eject messages 

to/from the network respectively. Messages generated by 

the PE are transferred to the router through the injection 

channel. Messages at the destination are transferred to the 

local PE through the ejection channel. Each physical 

channel is associated with some, say V, virtual channels. 

A virtual channel has its own flit queue, but shares the 

bandwidth of the physical channel with other virtual 

channels in a time-multiplexed fashion [7]. The router 

contains flit buffers for any incoming virtual channel. An 

(n+1)V-way crossbar switch direct message flits from any 

input virtual channel to any output virtual channel. Such a 

switch can simultaneously connect multiple input to 

multiple output virtual channels while there is no 

conflicts. 

Deadlock-free fully-adaptive routing algorithms that 

require only one extra virtual channel compared to 

deterministic routing have been discussed in [12, 13, 29] 

of which Duato�s fully-adaptive routing algorithm is most 

known and widely used in studies and practice as it 

provide the maximum adaptivity with the minimum 

number of virtual channels.  

Duato�s algorithm [12] divides the virtual channels 

into two classes: a and b. At each routing step, a message 

visits adaptively any available virtual channel from class 

a. If all the virtual channels belonging to class a are busy, 

it visits a virtual channel from class b using deterministic 

routing. The virtual channels of class b define a complete 

deadlock-free virtual sub-network, which acts like a 

�drain� for the virtual sub-networks built from virtual 

channels belonging to class a. In k-ary n-cubes, Duato�s 

algorithm requires at least three virtual channels per 

physical channel to ensure deadlock-freedom where the 

class a contains one virtual channel and class b owns two 

virtual channels. When there are more than three virtual 

channels, network performance is maximised when the 

extra virtual channels are added to class a [12, 13]. Thus, 

with V virtual channels per physical channel, the best 

performance is achieved when class a and b contain V-2 

and 2 virtual channels respectively. When the network is a 

hypercube (k=2), however, arrangement of virtual 

channels will be different. In this case Duato�s algorithm 

requires at least one virtual channel in class b and all the 

remainder virtual channels to be included in class a virtual 

channels. 
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3. Analysis 

The model uses assumptions that are widely used in the 

literature [1, 2, 4, 5, 8, 9, 11, 14, 17, 26, 28]. 

a)  Nodes generate traffic independently of each other, 

and which follows a Poisson process with a mean rate 

of λ messages per cycle.  

b)  The arrival process at a given channel is approximated 

by an independent Poisson process.   

c) Message destinations are uniformly distributed across 

network nodes. 

d) Message length is fixed and equal to M flits, each of 

which is transmitted in one cycle from one router to 

the next. 

e) The local queue at the injection channel in the source 

node has infinite capacity. Moreover, messages are 

transferred to the local PE as soon as they arrive at 

their destinations through the ejection channel. 

f) V virtual channels are used per physical channel. Class 

a contains  virtual channels, that are crossed 

adaptively. On the other hand, class b contains two 

virtual channels that are crossed deterministically. Let 

the virtual channels belonging to class a and b be 

called the adaptive and deterministic virtual channels 

respectively. When there is more than one adaptive 

virtual channel available a message chooses one at 

random. To simplify the model derivation no 

distinction is made between the deterministic and 

adaptive virtual channels when computing virtual 

channels occupancy probabilities [4, 26, 28].  

)2( −V

 

The model computes the mean message latency as 

follows. First, the mean network latency, S , that is the 

time to cross the network is determined. Then, the mean 

waiting time seen by a message in the source node, sW , 

is evaluated. Finally, to model the effects of virtual 

channels multiplexing, the mean message latency is 

scaled by a factor, V , representing the average degree of 

virtual channels multiplexing that takes place at a given 

physical channel. Therefore, the mean message latency 

can be written as 

VWSLatency s )( +=  (1)  

The average number of hops that a message makes across 

the network, d , is given by  

∑
=

=
max

1

d

i

iipd  (2) 

where   is the probability that a newly-generated 

message makes  hops to reach its destination and 

is the maximum distance that a message may 

traverse  to reach its destination (also called network 

diameter) and are given  by 

ip

i

maxd

)1(max −= knd  (3) 

To compute  let us refer to the following result from 

the combinatorial theory [23, 27, 30]. 

ip

Proposition 1: The number of ways to distribute r like 

objects into m different cells, such that no cell contains 

less than q objects and not more than  objects is 

the coefficient of  in the expansion of the 

polynomial 

Let us refer to the coefficient of  as . 

In [30], the expression of  is given by 

1-kq +
qmr−

mkmk 1−

)

x

mx)−−

Nq

xxxxF )1(1()1()( ++=−=
qmrx − ),(1 mr−

,(1 rkq −+

m

x .....2 ++

N kq
q
+

)m

( )1
1

0

1 )()1(),(
−+−−

−
=

−+ ∑ −= mlkmqr
m

l

m
l

lkq
q mrN  

(4) 

If the hops made by a message are treated as like objects 

and the visited dimensions as different cells, the above 

proposition can be used to compute the number of nodes 

which are i hops away from a given node in the k-ary n-

cube as 

( 1
1    

0

1
0 )()1(),( −+−

−
=

− ∑ −== nlki
n

n

l

n
l

lk
i niNn  (5) 

Hence, recalling that a node can not send a message to 

itself,  can be written as ip

1−
=

N

n
p i

i      (6) 

with N being the number of nodes in the network 

( ). 
nkN =

 Fully-adaptive routing allows a message to use 

any available channel that brings it closer to its 

destination resulting in an evenly distributed traffic rate 

on all network channels. A router in the k-ary n-cube has 

n output channels and the PE generates, on average, λ  

messages in a cycle. Since each message travels, on 

average, d  hops to cross the network the rate of 

messages received by each channel, cλ , can be written as 

[2] 

n

d
c

λλ =   (7) 

The network latency for a message consists of two 

parts: one is the delay due to the actual message 

transmission time i.e. iM + , and the other is due to 

blocking in the network. The network latency of an i-hop 

message, , can therefore be written as  iS
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∑
=

++=
i

h

i,hi BiMS
1

 (8) = PPP  

1−i,h

i,h ad&ablock

ϕ
  (11) 

with  being the probability that all adaptive virtual 

channels of a physical channel are busy and  being 

the probability that all adaptive and deterministic virtual 

channels of a physical channel are busy. To compute 

three cases should be considered, and are as follows 

[26, 28]. 

aP

daP &

aP

where M  is the message length and  is the mean 

blocking time seen by an i-hop message at the -hop 

channel  in its journey. Averaging over all the 

possible nodes destined made by a regular message yields 

the mean network latency for regular messages as 

i,hB

thh
)ih ≤≤1(

∑
=

=
maxd

i

iiSpS
1

  (9) 
a)  V virtual channels are busy which means all adaptive 

virtual channels are busy as well. 

b)  (V-1) virtual channels are busy. The number of 

combinations where (V-1) out of V virtual channels 

are busy is ( )V
V
 

1−  of which only two combinations 

result in all adaptive virtual channels being busy. 

Calculation of the message blocking ( ) i,hB

A message is blocked at a given channel when all the 

adaptive virtual channels of the remaining dimensions to 

be visited and also the deterministic virtual channels of 

the lowest dimension still to be visited are busy. When 

blocking occurs a message has to wait for a deterministic 

virtual channel at the lowest dimension [12]. Note that 

under the uniform traffic pattern and due to the symmetry 

of the k-ary n-cube topology, adaptive routing results in 

an evenly distributed traffic rate on all network channels. 

Furthermore, a message sees the same mean waiting time 

and mean service time across all channels regardless of 

their positions in the network. However, the message sees 

a different probability of blocking at each channel as the 

number of alternative paths, that can be selected, changes 

from one channel to the next. The probability of blocking 

depends on the number of output links, and thus on the 

virtual channels that a message can use at its next hop.  

c)  (V-2) virtual channels are busy. The number of 

combinations whe e (V-2) out of V virtual channels 

are busy is 

r

( )V
V
 

2−  of which only one combination 

results in all adaptive virtual channels being busy. 

Similarly, to compute two cases should be 

considered, and these are the following. 

daP &

a) V virtual channels are busy, that is all adaptive, and 

deterministic virtual channels are busy. 

b) (V-1) virtual channels are busy. In this case, only two 

combinations out of 

 

( )V
V
 

1−  result in all adaptive and 

deterministic virtual channels being busy. 

Consider a message that has to cross i hops to reach 

its destination. Suppose that this i-hop message has 

reached the hth-hop channel ( along its path. 

Let  and  denote the probability of blocking of 

an i-hop message in its h -hop channel and the mean 

waiting time when blocking occurs, respectively. The 

mean blocking time, , is given by 

)1 ih <≤

i,hblockP w

th

i,hB

Let  vP )0( Vv ≤≤  represent the probability that  

virtual channels at a physical are busy. Taking into 

account the different cases mentioned above,  and 

 are given in terms of by [26, 28] 

v

aP

daP & vP








−

+







−

+= −−

21

2 21

V
V

P

V
V

P
PP VV

Va  (12) 

∑
=

=
i

h

blocki,h wPB
i,h

1

                                                  (10) 








−

+= −

1

2 1
&

V
V

P
PP V

Vda  (13) 
The probability of blocking  is computed 

as follows. The number of alternate routes that an i-hop 

message can select when it reaches channel h, to advance 

towards its destination depends on the number of 

dimensions it has already passed. Let 

i,hblockP

i,hϕ  be the number 

of dimensions that an i-hop message still has to visit when 

crossing channel  h ( i,hϕ  are determined below). Hence, 

the probability can be calculated as 
i,hblockP

Calculation of the average number of channels that an 

i-hop message can select at channel  (h i,hϕ ) 

Let nsssS L21=  be the source node and 

nddd L21D =  denotes a destination. Let us define the 

set }{
lxx iI = , )n1( l ≤≤ , , where each 

element denotes the number of hops that the message 

makes along each dimension l when it traverses the 

)1( inx ≤≤
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network from the source node to the destination node, that 

is . The index x in represents 

each of the  nodes that are i-hop away from the source 

node, in which i . 

lxl dkis
l

=+ mod)(

in

∑
=

=
n

l

xx i

1

},,,{ 21 niii L=

Im ,{ 1zZ =

)ih ≤≤

lxi

1(

l

z

≤
i

N

−
−−

1

1

I

)1( −+ ll kq

rx

∏
=

++=
m

l

qq ll xxx

1

1
()(

),,..,,( 21 m Kqqq=

)(, rN m
KQ

∑
−

=

−= ∑ =
12

0

,
)1()( 1

m m

l

j

m
KQ

r

,..,(),,..,( 11 m kKqq ==

Im hi,

)(,
,0

Im

Z
h ZhN ==

l ≤≤1

≤

+

=

lj

k

{

n

For the following discussion let set 

denotes one of the , i-hop messages 

and let  and denote the number 

of non-zero and the set of non-zero elements in this set, 

respectively. The number of ways to distribute h 

 hops over m  dimensions such that the 

number of hops made in each dimension l 

I

1(

in

},,2 ImzL

I

)Iml ≤  

be at most the l-th element of the set I, that is , can be 

calculated the following result from combinatorial theory 

[23, 30]. 

l

Proposition 2: The number of ways to distribute r 

indistinguishable objects into m distinguishable cells, 

such that no cell contains less than  objects and not 

more than  1  objects is given by the 

coefficient of in the following product.  

lq

ml ≤

−++ kq llxf
1
)...

 
(14)

 

Let us refer to the coefficient of  as , 

. In [16], an 

expression for  is calculated that is given by  

rx

)m

)(, rm
KQ

,..,,( 21 kkkQ

 

==












 ∑∑−+
11 l

m
l l

m
l l

m

kjqrm
N

)mQ  (15) 
),(' lI =

 

If the hops made by the i-hop message at channel h are 

treated as like objects and the visited dimensions, , as 

different cells, the number of ways to distribute h hops 

over dimensions, n , can be written as 

Im

},,, 21 Imi zzzn L  (16)  y
P

In this way h hops are distributed over m dimensions 

such that the number of hops made at each dimension l be 

at most the l-th, , element of the set Z, that is 

. The probability that a message has entirely crossed 

one dimension on its h -hop is given by 

lz

th

(
,0

)1('

)('

h
Im

Z

I

Z l

'Im

,1L

1 1

' )2(

1

N

l +

2−

,
2l

z

,0

,0
1

N

N

Im
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m
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', 21 I

  or  

x )

)
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)(
,0

)1('

11

N

zhN

iPass

I m
m

l

l

h

∑
=

−

=   (17) 

where  and 1)1( −= Im

,1, 11 }1,,1,1{)(' )('21 −−−−−= +− ll zz

thh

lm I
zzzlZ L

. Similarly, the probability that a message has entirely 

crossed two dimensions on its  hop can be expressed 

as 

)(

)(

)(

,0

2

21

)2('

21,0

)2( '

),('

2

hN

zzh

iPass
Im

Z

I I
Im

Z
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m

l

llll

h

∑ ∑
=

−−

=  (18) 

where )2(' = II mm and L,1{),(' 121 −= zllZ  

}1,,1,1,1,1, )2('1111 211
−−−−− +−+− Imlll zzzz LL  

More generally, the probability that a message has 

entirely crossed y dimensions can be written as 

)(

)(

)(

1

21

112

)('

1 1

)('

),,,('

)(')('

1

h

zh

iPass

I

i
I

y

I
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l

y

i

l
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lllZ
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= ==+=

−

=

−
L

L  (19) 

where mym II =)('  and    =),,,(' 21 ylllZ L

',,','{ )('21 ym I
zzz L is the non-zero elements in the 

following set 

}',,'{,,21 ny IIll LL





−
==

=
otherwise  I

  or  lili
I

i
i 1

0
'

21

 

 (20) 
= li  or  yL

Considering all of the i-hop messages and using the above 

equation, the probability of passing y dimensions for an i-

hop on its  hop can be expressed as 
thh

∑
=

=
in

x

y
hh

iPassi

1

()(

 

(21) 

The number of channels, and thus the number of 

virtual channels, that a message can select at a given hop 

depends on the number of dimensions still to be visited. 

When a message arrives at channel i  it has already made 
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)1( −i

1( y≤
 hops and has crossed, say, y dimensions, 

. At its next hop the message can use (n-y) 

channels at the remaining (n-y) dimensions still to be 

visited. Averaging all of the possible cases yields the 

number of channels, 

)n≤

ih,ϕ , that the message can select 

when crossing channel h, ( )1(),max ihdi1 ≤≤≤≤ , as 

∑
=

n

y

n

0

(=ih,ϕ i)(

w

ρ
=w

cλρ =

2C
S
=

S
σ

2)( MS −=

w

cλ

=

S

Ws =

Calculation of the average degree of virtual channels 

multiplexing (V ): 

The probability, , that v adaptive virtual channels are 

busy at a physical channel can be determined using a 

Markovian model. State 

vP

vπ )0( Vv ≤≤ corresponds to v 

virtual channels being busy. The transition rate out of 

state vπ  to state 1+vπ  is the traffic rate cλ (given by 

equation 7) while the rate out of state vπ to state 1−vπ is 

S

1  ( S  is given by equation 9). The transition rates out of 

state Vπ  are reduced by cλ  to account for the arrival of 

messages while a channel is in this state. The steady-state 

solutions of the Markovian model yeild the probability 

 (vP )V1 v ≤≤ as [9] 

− y
hPy)

 

 (22) 

Calculation of the mean waiting time at a channel ( ), 

local queue (

w

sW ) 

To determine the mean waiting time, , to acquire a 

virtual channel a physical channel is treated as an M/G/1 

queue with a mean waiting time of [19] 

)1(2

)1( 2

ρ−
+

S
CS

 (23) 
=v 0
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= ∑ =
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S    (24) 
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  (25)   Sλ
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−
Vv

Vv

Q
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S

v
c

v

c

V
c

λ
λ
1

)(

10
)(

  (29) 

where cλ  is the traffic rate on the channel given by 

equation 7, S  is its service time calculated in equation 9, 

and 
2

 is the variance of the service time distribution. 

Since the minimum service time at a channel is equal to 

the message length, M, following a suggestion proposed 

in [11], the variance of the service time distribution can 

be approximated as 
2

S
σ . Hence, the mean 

waiting time becomes 

When multiple virtual channels are used per physical 

channel they share the bandwidth in a time-multiplexed 

manner. The average degree of multiplexing of virtual 

channels, that takes place at a given physical channel, can 

be estimated by [9].  

)1(2

)
)(

1(
2

2
2

S

S

MS
S

cλ−

−
+

 (26) 

∑
∑

=

==
V

v v

V

v v

vP

Pv
V

1

1

2

 (30) 

The above equations reveal that there are several inter-

dependencies between the different variables of the 

model. For instance, Equations 8, 9 and 10 reveal that S  

is a function of w while equation 26 shows that w is a 

function of S . Given that closed-form solutions to such 

inter-dependencies are very difficult to determine the 

different variables of the model are computed using 

iterative techniques for solving equations.  

Similarly, modelling the local queue in the source node as 

an M/G/1 queue, with the mean arrival rate and service 

time  with an approximated variance ( 2
MS − )  yields 

the mean waiting time seen by a message at source node 

as [19] 

( )

)1(2

1
2

2
2

S
V

S

MS
S

V

λ

λ

−













 −
+

 (27) 

In Fig. 1, we have compared the proposed model to the 

accurate model proposed in [28]and the model proposed in 

[26], which referred as general, complex and average in 

the figure respectively for two different network, namely 

the 8-ary 3-cube and 10-ary 5-cube with message lengths 

M=32 and 64 flits and V=3 and 5 virtual channels per 

physical channel. As can be seen in the figure, the 

proposed model in this paper is almost matching to the 
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other models. However, it is slightly overestimating the 

mean message latency which causes an earlier saturation 

compared to accurate model proposed in [28]. Although 

the model is slightly less accurate than the model in [28] 

under heavy traffic loads and near the saturation region, its 

generality and simple applicability to other routing 

algorithms makes it an attractive tool for studying 

performance metrics of k-ary n-cubes and hypercubes 

under different working conditions. Moreover, in Fig. 1, 

we have compared the proposed model to the hypercube 

model proposed in [4], which referred as bora, and general 

in the figure respectively for the 2-ary 3-cube with 

message lengths M=32 and 64 flits and V=3 virtual 

channels per physical channel. As can be seen in the 

figure, the proposed model in this paper exactly matches to 

the Bora model. However, it is worth mentioning that 

equations 12 and 13 in the hypercube is given by [4].     

5. Conclusion  
This paper has described an analytical model to compute 

the mean message latency in wormhole-routed k-ary n-

cubes and hypercube with Duato�s fully-adaptive routing 

algorithm. The proposed model achieves a good degree of 

accuracy under different operating conditions. 

Furthermore, it manages to achieve this good degree of 

accuracy wile maintaining generality, ease of applicability 

and efficient execution time, making it a practical 

evaluation tool that can be used to gain insight into the 

performance behavior of fully-adaptive routing in 

wormhole-routed k-ary n-cubes.  

Our next objective is to develop analytical models 

for other common network topologies for 

multicomputers, e.g., n-dimensional meshes, which are 

variations of k-ary n-cubes without wrap-around 

connections. Developing a model for meshes is more 

complicated than for k-ary n-cubes because traffic rates 

and service times have to be computed at each network 

channel as these differ from one channel to the next due 

to the inherent asymmetry of these topologies. 
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Fig. 1: Average message Latency predicted by the model against simulation results for an 8-ary 3-cube 

and 10-ary 3-cube and 3 dimensional hypercube with message length M=32, 64 virtual channel number 

V=3, V=5 and V=7 for 4 different models. 
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