Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A general analytical model of adaptive wormhole routing in k-ary n-cubes

Khonsari, A. and Ould-Khaoua, M. and Ferguson, J.D. (2003) A general analytical model of adaptive wormhole routing in k-ary n-cubes. In: International Symposium on Performance Evaluation of Computer and Telecommunication Systems, 2003-07-20 - 2003-07-24.

[img]
Preview
Text (strathprints002531)
strathprints002531.pdf - Accepted Author Manuscript

Download (256kB) | Preview

Abstract

Several analytical models of fully adaptive routing have recently been proposed for k-ary n-cubes and hypercube networks under the uniform traffic pattern. Although,hypercube is a special case of k-ary n-cubes topology, the modeling approach for hypercube is more accurate than karyn-cubes due to its simpler structure. This paper proposes a general analytical model to predict message latency in wormhole-routed k-ary n-cubes with fully adaptive routing that uses a similar modeling approach to hypercube. The analysis focuses Duato's fully adaptive routing algorithm [12], which is widely accepted as the most general algorithm for achieving adaptivity in wormhole-routed networks while allowing for an efficient router implementation. The proposed model is general enough that it can be used for hypercube and other fully adaptive routing algorithms.