Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Engineering trust based collaborations in a global computing environment

English, C. and Terzis, S. and Wagealla, W. (2004) Engineering trust based collaborations in a global computing environment. In: Second International Conference on Trust Management, 2004-03-29 - 2004-04-01.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Trust management seems a promising approach for dealing with security concerns in collaborative applications in a global computing environment. However, the characteristics of this environment require a move from reliable identification to mechanisms for the recognition of entities. Furthermore, they require explicit reasoning about the risks of interactions, and a notion of uncertainty in the underlying trust model. From our experience of engineering collaborative applications in such an environment, we found that the relationship between trust and risk is a fundamental issue. In this paper, as an initial step towards an engineering approach for the development of trust based collaborative applications, we focus on the relationship between trust and risk, and explore alternative views of this relationship. We also exemplify how particular views can be exploited in two particular application scenarios. This paper builds upon our previous work in developing a general model for trust based collaborations.