Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Trust-based model for privacy control in context aware systems

Wagealla, W. and Terzis, S. and English, C. (2003) Trust-based model for privacy control in context aware systems. In: Second Workshop on Security in Ubiquitous Computing at the Fifth Annual Conference on Ubiquitous Computing (UbiComp2003), 2003-10-12 - 2003-10-15.

[img]
Preview
PDF (strathprints002521.pdf)
strathprints002521.pdf

Download (50kB) | Preview

Abstract

In context-aware systems, there is a high demand on providing privacy solutions to users when they are interacting and exchanging personal information. Privacy in this context encompasses reasoning about trust and risk involved in interactions between users. Trust, therefore, controls the amount of information that can be revealed, and risk analysis allows us to evaluate the expected benefit that would motivate users to participate in these interactions. In this paper, we propose a trust-based model for privacy control in context-aware systems based on incorporating trust and risk. Through this approach, it is clear how to reason about trust and risk in designing and implementing context-aware systems that provide mechanisms to protect users' privacy. Our approach also includes experiential learning mechanisms from past observations in reaching better decisions in future interactions. The outlined model in this paper serves as an attempt to solve the concerns of privacy control in context-aware systems. To validate this model, we are currently applying it on a context-aware system that tracks users' location. We hope to report on the performance evaluation and the experience of implementation in the near future.