Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Combination of Similarity Measures for Effective Spoken Document Retrieval

Crestani, F. (2003) Combination of Similarity Measures for Effective Spoken Document Retrieval. Journal of Information Science, 29 (2). pp. 87-96. ISSN 0165-5515

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Often users of information retrieval systems and document authors use different terms to refer to the same concept. For this simple reason, information retrieval is affected by the 'term mismatch' problem. The term mismatch problem does not only have the effect of hindering the retrieval of relevant documents, it also produces bad rankings of relevant documents. A similar problem can be found in spoken document retrieval, where terms misrecognized by the speech recognition process can hinder the retrieval of potentially relevant spoken documents. We will call this problem 'term misrecognition', by analogy to the term mismatch problem. This paper presents two classes of retrieval models that attempt to tackle both the term mismatch and the term misrecognition problems at retrieval time using term similarity information. The models use either complete or partial knowledge of semantic and phonetic term similarity, evaluated using statistical methods from the corpus.