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Abstract

Structured document retrieval aims at retrieving the document components that best satisfy a
query, instead of merely retrieving pre-defined document units. This paper reports on an investigation
of a tf-idf-acc approach, where #f and idf are the classical term frequency and inverse document
frequency, and acc, a new parameter called accessibility, that captures the structure of documents.

The tf-idf-acc approach is defined using a probabilistic relational algebra. To investigate the
retrieval quality and estimate the acc values, we developed a method that automatically constructs
diverse test collections of structured documents from a standard test collection, with which experi-

ments were carried out. The analysis of the experiments provides estimates of the acc values.

1 Introduction

In traditional information retrieval (IR) systems [18], retrievable units are fixed. For example, the whole
document, or, sometimes, pre-defined parts such as paragraphs constitute the retrievable units. The
logical structure of documents (chapter, section, table, formula, author information, bibliographic item,
etc) is therefore “flattened” and not exploited. Classical retrieval methods lack the possibility to interac-
tively determine the size and the type of retrievable units, that best suit an actual retrieval task or user

preferences.

Current research is aiming at developing retrieval models that dynamically return document components
of varying complexity. A retrieval result may then consist of several entry points to a same docu-
ment, whereby each entry point is weighted according to how it satisfies the query. Authors such as

[17, 6, 13, 15, 8] have developed and implemented such approaches. Their models exploit the content



and the logical structure of documents to estimate the relevance of document components to queries,
based on the aggregation of the estimated relevance of their related components. These models have
been based on various formal theories (e.g. fuzzy logic [3], Dempster-Shafer’s theory of evidence [13],
probabilistic logic [17, 2], and Bayesian inference [15]). What these models have in common is that the
basic components of their retrieval function are variants of the two standard term weighting schemes,
term frequency (#f) and inverse document frequency (idf). Evidence associated with the logical structure

of documents is often encoded into one or both of these dimensions.

In this paper, we make this evidence explicit by introducing the “accessibility” dimension, denoted by
acc. This dimension measures the strength of the structural relationship between document components:
the stronger the relationship, the more impact has the content of a component in describing the content
of its related components (e.g. [17, 6]). We refer to the approach as tf-idf-acc. We are interested in

investigating how the acc dimension affects the retrieval of document components of varying complexity.

To carry out this investigation, we require a framework that explicitly captures the content and the
structure of documents in terms of our tf-idf-acc approach. We use a probabilistic relational algebra
[17] for this purpose (Section 2). Our investigation also requires test collections of structured documents.
Since relevance assessments for structured documents are difficult to obtain and manual assessment is
expensive and task specific, we developed an automatic approach for creating structured documents and
generating relevance assessments from a flat test collection (Section 3). Finally, we perform retrieval runs
for different settings of the accessibility dimension. The analysis provides us with methods for estimating

the appropriate setting of the accessibility dimension for structured document retrieval (Section 4).

2 The tf-i1df-acc Approach

We view a structured document as a tree whose nodes, called contexts, are the components of the
document (e.g., chapters, sections, etc.) and whose edges represent the composition relationship (e.g.,
a chapter contains several sections). The root context of the tree, which is unique for each document,
embodies the whole document. Atomic contexts are document components that correspond to the last

elements of the composition chains. All other nodes are referred to as inner contexts.

Retrieval on structured documents takes both the logical structure and the content of documents into
account and returns, in response to a user query, document components of varying complexity (root, inner
or atomic contexts). This retrieval methodology combines querying - finding which atomic contexts match
the query - and browsing along the documents’ structure - finding the level of complexity that best match
the query [5]. Take, for example, an article with five sections. We can define a retrieval strategy that
is to retrieve the whole article if more than three of its sections are relevant to the query. Dynamically
returning document components of varying complexity can, however, lead to user disorientation and
cognitive overload [6, 7, 10]. This is because the presentation of document components in the retrieval

result does not take into account their structural proximity within the documents. In the above example,



depending on the assigned relevance status values, the article and its sections could be displayed at

different positions in the ranking.

To reduce user disorientation and cognitive overload, a retrieval strategy would be to retrieve (and
therefore display to the user) super-contexts composed of many relevant sub-contexts before - or instead
of - retrieving the sub-contexts themselves. This strategy would prioritise the retrieval of larger super-
contexts from where the sub-contexts could be accessed through direct browsing [6, 5]. Other strategies

could favour smaller, more specific contexts, by assigning smaller relevance status values to large contexts.

To allow the implementation of any of the above retrieval strategies, we follow the aggregation-based
approach to structured document retrieval (e.g. [17, 11, 2, 15, 6, 8]). We base the estimation of relevance,
or in other words, we compute the retrieval status value (RSV) of a context based on a content description
that is derived from its content and the content of its sub-contexts. For this purpose, we augment the
content of a super-context with that of its sub-contexts. The augmentation process is applied to the
whole document tree structure, starting with the atomic contexts, where no augmentation is performed,

and ending with the root context.

In this framework, the browsing element of the retrieval strategy is then implemented within the method
of augmentation. By controlling the extent to which the sub-contexts of a super-context contribute to

its representation we can directly influence the derived RSVs.

Via the augmentation process we can also influence the extent to which the individual sub-contexts
contribute to the representation of the super-context. This way certain sub-contexts, such as titles,

abstracts and conclusions, etc. could be emphasised while others could be de-emphasised.

We model this impact of the sub-contexts on the super-context by expanding the two dimensions, term
frequency, tf, and inverse document frequency, idf, standard to IR, with a third dimension, the acces-
sibility dimension, acc'. We refer to the influencing power of a sub-context over its super-context as
the sub-context’s importance. What the acc dimension represents, then, is the degree to which

the sub-context is important to the super-context.

In the remainder of this section we show, by means of probabilistic relational algebra defined in [17, 9],
how this dimension can be used to incorporate this qualitative notion of context importance for structured

document retrieval.

2.1 Probabilistic Relational Algebra

Probabilistic Relational Algebra (PRA) is a language model that incorporates probability theory with the
well known relational paradigm. The algebra allows the modelling of document and query representations

as relations consisting of probabilistic tuples, and it defines operators, with similar semantics to SQL but

IThe term “accessibility” is taken from the framework of possible worlds and accessibility relations of a Kripke structure
[4]. In [12], a semantics of the tf-idf-acc is defined, where contexts are modelled as possible worlds and their structure is

modelled through the use of accessibility relations.



with probabilistic interpretations, which allow the description of retrieval strategies.

2.1.1 Document and query modelling

A PRA program describing the representation of a structured document collection uses relations such
as term, termspace, and acc. The term relation represents the #f dimension and consists of probabilistic
tuples in the form of tf-weight term(index_term,context), which assign tf_weight values to each (index_term,
contert) pair in the collection (e.g. index terms that occur in contexts). The value of tf weight € [0,1] is
a probabilistic interpretation of the term frequency. The termspace relation models the idf dimension by
assigning idf values to the index terms in the collection. This is stored in tuples in the form of idf-weight
termspace(indez_term), where idf-weight € [0,1]. The acc relation describes the document structure and
consists of tuples acc_weight acc(context_p,context_c), where context_c is “accessible” from contezrt_p with

a probability acc_weight?.

A query representation in PRA is described by the gterm relation which is in the form of ¢ weight
qterm(query-term), where the g-weight describes the importance of the query term, and query_term are

the terms composing the query.

2.1.2 Relational operators in PRA

Similarly to SQL, PRA supports a number of relational operators. Those used in this paper are SELECT,
PROJECT, JOIN, and UNITE. Their syntax and functionalities are described next.

e SELECT|[criteria](relation) returns those probabilistic tuples of relation that match the
specified criteria, where the format of criteria is $column=>a_value. =~ For example, SE-
LECT[$1=sailing](termspace) will return all those tuples from the fermspace relation that have
the term “sailing” in column one. To store the resulting tuple in a relation we use the following
syntax: new_relation = SELECT[criteria](relation). The arity of the new_relation equals to the

arity of relation.

e JOIN[$columnl=8column2](relationl,relation?2) joins (matches) two relations and returns
tuples that contain matching data in their respective columns, where columnl specifies a column of
relationl and column?2 relates to relation2. The arity of the returned tuples is the sum of the arity
of the tuples in relation! and relation2. For example, new_term=JOIN[$1=8$1](term,termspace) will
populate new_term with tuples that have the same value in column one. The format of the resulting

tuples is new_weight new_term(index_term,context,index_term), where the value of new_weight is

20n a conceptual level there is no restriction on which contexts can access which other contexts, so this formalism can be
adopted to describe networked architectures. In this study, however, we only deal with tree type structures where context_p

and contezt_c form a parent-child (super-context and sub-context) relationship.
3Also <, >, <, etc.



derived from the values of tf-weight and idf-weight (e.g. based on probability theory, or fuzzy
theory).

e PROJECT|columns](relation) returns tuples that contain only the specified columns
of relation, where the format of columns is $columni,$column?2, etc. For example,
new_term=PROJECT[$1,$3](JOIN[$2=8$2](term,acc)) returns all (index_term,context_p) pairs
where the indez_term occurs in context_p’s sub-context. This is because the JOIN operator re-
turns the tuples new_weight(indez_term,context_c,context_p,context_c), where context_p is the super-
context of context_c. Projecting column one and three into new_term results in new_weight

new_term (indexz_term,context_p).

e UNITE(relationl,relation2) returns the union of the tuples stored in relation! and relation2.
For example, new_term=UNITE(term,PROJECT[$1,$3](JOIN[$2=$2](term,acc))) will produce a
relation that includes tuples of the term relation and the resulting tuples of the PROJECT opera-
tion. The probabilities of the tuples in new_term are calculated according to probability theory or

fuzzy theory.

Based on the relations describing the document and query space and with the use of the PRA operators
we can implement a retrieval strategy that takes into account both the structure and the content of the
documents by augmenting the content of sub-contexts into the super-context, where the augmentation

can be controlled by the acc_weight values.

2.1.3 Retrieval strategies

Let us first model the classical tf-idf retrieval function. For this, we use the JOIN and PROJECT
operations of PRA.

tfidf-indexr = PROJECT[$1,$2](JOIN[$1=81](term,termspace))
retrieve_tfidf = PROJECT[$3](JOIN[$1=81](gterm,tfidf-index))

Here, the first function computes the tf-idf indexing. It produces tuples in the form of tf idf-weight
tfidf-index(index_term,context). The tf idf weight is calculated using probability theory and the inde-
pendence assumption as tfweight X idf-weight. The second function joins (matches) the query terms
with the tfidf-indezx terms and produces the retrieval results in the form of rsv retrieve_tfidf(context). The
RSVs given in rsv are calculated according to probability theory assuming disjointness with respect to

the term space (termspace) as follows:

rsv(context) = Z q-weight; x tf_weight;(context) x idf weight;

query-term;



We use next the acc relation to take the structure into consideration. We augment the content of the

super-context by that of its sub-contexts. This is modelled by the following PRA equation.
tfidfacc_index = PROJECT[$1,$3](JOIN[$2=82](tfidf-index,acc))

The augmented relation consists of tuples tfidfacc_weight tfidfacc_index(index_term,context_p) where con-
text_p is the super-context of contert_c which is indexed by index_term. The value of tfidfacc_weight
is calculated as tf_idf -weight x acc_weight (assuming probabilistic independence). Based on the tfid-

facc_index we can now define our retrieval strategy for structured documents.

tfidfacc_index = PROJECT[$1,$3](JOIN[$2=82](tfidf-index,acc))
retrieve_tfidfacc = PROJECT[$3](JOIN[$1=8$1](qterm,tfidfacc_index))
retrieve = UNITE(retrieve_tfidf,retrieve_tfidfacc)

The RSVs of the retrieval result are calculated (by the UNITE operator) according to probability theory

and assuming independence:

rsv(context) = P(retrieve_tfidf(context) OR retrieve_tfidfacc(context))
= P(retrieve_t fidf (context)) + P(retrieve_t fidf acc(context)) —

( ( )

( ( ) )

P(retrieve_t fidf (context) AND retrieve_t fidf acc(context))

= P(retrieve_t fidf (context)) + P(retrieve_t fidfacc(context)) —
( ( ) )

P(retrieve_t fidf (context)) x P(retrieve_tfidf acc(context)

Since the weight of tfidfacc_indez is directly influenced by the weight associated with acc, the resulting

RSVs is also dependent on acc.

2.2 Example

Consider the following collection of one document docl composed of two sections, secl and sec2. Terms

such as sailing, boats, etc. occur in the collection:

0.1 term(sailing, docl)
0.8 term(boats, docl)

0.7 term(sailing, secl)

(
(
(
0.8 term(greece, sec2)

0.4 termspace(sailing)
0.3 termspace(boats)

0.2 termspace(greece)

(
(
(
0.1 termspace(santorini)

0.8 ace(docl, secl)



0.6 acc(docl, sec2)
Let us take the query “sailing boats”, represented by the following PRA program.

gterm(sailing)

gterm(boats)

Given this query and applying the classical tf_idf retrieval function (as described in the previous section)

to our document collection we retrieve the following document components.

0.28 retrieved_tfidf(docl)
0.28 retrieved_tfidf(secl)

Both retrieved contexts have the relevance status value of 0.28. The above retrieval strategy, however,
does not take into account the structure of the document, e.g. that secl which is about sailing is part
of docl. From a user’s point of view, it might be better to retrieve first - or only - docl since secl can
be accessed from docl by browsing down from docl to secl. Let us now apply our tfidf acc retrieval

strategy. We obtain:

0.441 retrieve(docl)
0.28 retrieve(secl)

This shows that the RSV of docl increases when we take into account the fact that docl is composed
of secl, which is also indexed by the term ”sailing”. This is done using the structural knowledge stored
in acc. This demonstrates that by using our third dimension, acc, we obtain a ranking that exploits the
structure of the document to determine which document components should be retrieved higher in the

ranking.

In designing applications for structured document retrieval, we are faced with the problem of determining
the probabilities (weights) of the acc relation. In our retrieval applications so far, constant acc values such
as 0.5 and 0.6 were used. However we want to establish methods to derive estimates of the acc values.
To achieve this, we require test collections with controlled parameters to allow us to derive appropriate
estimations of the acc values with respect to these parameters. In the following section we present a

method for creating simulated test collections of structured documents that allow such an investigation.

3 Automatic Construction of Structured Document Test Col-

lections

Although many test collections are composed of documents that contain some internal structure [19, 1],
relevance judgements are usually made at the document level (root contexts) or at the atomic context
level. This means that they cannot be used for the evaluation of structured document retrieval systems,

which would require relevance judgements at the root, atomic and inner levels.



Our investigation requires several test collections of structured documents with different characteristics
(e.g. depth and width of document tree structure). These will enable us to investigate the ace dimension
under different conditions. Since relevance assessments for structured documents are difficult to obtain
and manual assessment is expensive and task specific, it was imperative to find a way to automatically
build such test collections. We developed a methodology that allowed us to create diverse collections
of structured documents and automatically generate relevance assessments. Our methodology exploits
existing standard test collections with their existing queries and relevance judgements so that no human
resources are necessary. In addition our methodology allows the creation of all test collections deemed
necessary to carry out our investigation regarding the effect of the acc dimension for structured document

retrieval.

In Section 3.1 we discuss how we created the structured documents, in Section 3.2 we discuss how we
decided on the relevance of the document components, and finally, in Section 3.3 we show the results of

the methodology using the CACM collection®.

3.1 Construction of the documents

Our basic methodology is to combine documents from a test collection to form simulated structured
documents. That is to treat a number of original documents from the collection as components of a
structured document. A simplified version of this strategy was used in [13]. In the remainder of this
section we shall present a more sophisticated version, and deal with some of the issues arising from the
construction of simulated structured documents. To illustrate our methodology, we used a well known

small standard test collection, the CACM test collection.

Using the methodology of combining documents, it is possible to create two types of test collections:
homogeneous collections in which the documents have the same logical structure and heterogeneous col-
lections in which the documents have varying logical structure. In our experiments, Section 4, we use

these collections to see how the values of acc compare for the two types of collections.

By controlling the number of documents combined, and the way documents are combined, it is also
possible to generate different types of structured documents. We used two main criteria to generate
structured documents. The first criterion is width. This corresponds to the number of documents that
are combined at each level, i.e. how many contexts in a document, and how many sub-contexts per
context. The second criterion is depth. This corresponds to how many levels are in the tree structure.
For example a document with no sub-contexts (all the text is at one level) has depth of 1, a document
with sub-contexts has depth 2, a document with sub-sub-contexts has depth 3, and so on. Using these
criteria it is possible to automatically generate test collections of structured documents that vary in width

and depth.

4The collection has 3204 documents and 64 queries. See www.dcs.gla.ac.uk/idom/ir_resources/tests_collections/ for

details of the collection.



For the experiments we describe in Section 4 we constructed eight homogeneous collections of structured
documents. The types of logical structure are shown in Figure 1. Pair (EE), Triple (EEE), Quad
(EEEE), Sext (EEEEEE) and Oct (EEEEEEEE) are composed of root and atomic contexts only. These
test collections will be useful in estimating the acc values based on the width criterion. The other
collections Pair-E ((EE)E), Pair-2 ((EE)(EE)) and Triple-3 ((EEE)(EEE)(EEE)) have root, inner and
atomic contexts. These collections are useful for estimating the acc values based on the depth criterion.
Collections of each type were built from the CACM test collection where documents of the test collection,

referred to as “original documents”, were used to form the atomic contexts.

Pair (EE) Pair-E ((EE)E) Pair-2 ((EE)(EE)) Triple (EEE)
" Tples Sext (EEEEEE) Oct (EEEEEEEE)
((EEE)(EEE)(EEE))

Figure 1: Types of logical structure

We also created one heterogeneous test collection, referred to as Mix, which is composed of a mixture of
Pair (EE) and Triple (EEE) documents.

We should note here that we are aware that the structured documents created in this manner often
will not have a meaningful content and may not reflect term distributions in real structured documents.
Nevertheless the use of simulated documents does allow for extensive investigation, Section 4, to provide
initial estimates for the acc values. We are currently using these estimates in our current work on a
real test collection of structured documents (XML-based documents). We are not, therefore, suggesting
that we can use the artificially created test collections as substitutes for real documents and relevance
assessments. Rather we use them as a test-bed to obtain estimates for parameters that will be used in
more realistic evaluations. As mentioned before, the necessity of using artificial test collections comes

from the lack of real test collections.

One of the advantages of our approach is that we can automatically create collections diverse in type and
size. However we must take steps to ensure that the created collections are realistic and of manageable

size to allow experimentation.

With a straight combinatoric approach, we can derive from a collection of N original documents the
possible number of structured documents would be N2 over 2 for the Pair type of collection (that is about
5 million documents for the 3204 documents of the CACM collection). Therefore we require methods
to cut down the number of actual documents combined. In the particular experiments we carried out,
we used two strategies to accomplish this: discarding “noisy” documents and minimising “dependent”

documents. These strategies are based on the assumption that a document which has not been explicitly



marked relevant to a query is considered not-relevant. Both strategies are based on an analysis of the

atomic contexts of the structured documents, i.e. the original documents from the CACM collection.

(1) discarding “noisy” documents: If a document’s sub-contexts are a mixture of relevant and non-

relevant contexts for all queries in the collection then the document is considered to be noisy.

That is, there is no query in the collection for which all sub-contexts are relevant or all sub-contexts are
non-relevant. We discard all noisy documents from the collection. This does not mean that we are only
considering structured documents where all sub-contexts are in agreement; we simply insist that they are

in agreement for at least one query in the collection®.

2) minimising “dependent” documents: With a straight combination approach we also have the
g

problem of multiple occurrences of the same atomic concepts (the original documents in the test

collection appearing many times). This could mean that our simulated structured documents may

be very similar - or dependent - due to the overlap between the sub-contexts.

Our second approach to cutting down the number of created documents is therefore to minimise the

number of dependent documents.

We do not, however, want to eradicate multiple occurrence completely. First, multiple occurrence mimic
real-world situations where similar document parts are used in several documents (e.g. web, hypertext,
digital libraries). Second, exclusive usage of an atomic context requires a procedure to determine which

atomic context leads to the “best” structured document, which is difficult, if not impossible to assess.

The way we reduce the number of multiple occurrences is to reduce the repeated use of atomic contexts
that are relevant to the same query. That is, we do not want to create many structured documents that

contain the same set of relevant contexts.

Our basic procedure is to reduce the number of documents whose atomic contexts are all relevant to the
same query, i.e. composed of components that are all relevant to the query. The reason we concentrate
on relevant contexts is that these are the ones we use to decide whether the whole structured document

is relevant or not, (see Section 3.2).

For each atomic context, e;, which is relevant to a query, g;, we only allow e; to appear in one document
whose other atomic contexts are all relevant to g;. This reduces multiple occurrences of e; in documents
composed entirely of relevant atomic contexts. As there may be many structured documents containing
e; whose atomic contexts are relevant, we need a method to choose which of these documents to use
in the collection. We do this by choosing the document with the lowest noise value. This means that
we prefer documents that are relevant to multiple queries over documents that are only relevant to one

query. If more than one such documents exists we choose one randomly.

Both these steps reduce the number of structured documents to a manageable size.

5This approach can be extended to define the degree of noise we allow in the collection.
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3.2 Constructing the relevance assessments

We have so far described how we created the structured documents and how we cut down the potential
number of documents created. What we have now to consider are the queries and relevance assessments.
The queries and relevance assessments come from the standard test collections that are used to build
the simulated structured documents. However, given that a structured document may be composed of
a mixture of relevant and non-relevant documents, we have to decide when to classify a root context

(structured document), or an inner context, as relevant or non-relevant.

Our approach defines the relevance of non-atomic contexts as the aggregation of the relevance of their

sub-contexts.

Let a non-atomic context d be composed of k sub-contexts el,...,ek. For a given query, we have three
cases: all the sub-contexts el to ek are relevant; all the sub-contexts are not relevant; and neither of
the previous two cases holds. In the latter, we say that we have “contradictory” relevance assessments.
For the first two cases, it is reasonable to assess that d is relevant and d is not relevant to the query,
respectively. In the third case, an aggregation strategy is required to decide the relevance of d to a query.

We apply the following two strategies:

e optimistic relevance: d is assessed relevant to the query if at least one of its sub-contexts is assessed
relevant to the query; d is assessed non-relevant if all its sub-contexts are assessed non-relevant to

the query.

e pessimistic relevance: d is assessed relevant to the query if all its sub-contexts are assessed relevant

to the query; in all other cases, d is assessed non-relevant to the query.

Variants of the above could be used; e.g., d is considered relevant if 2/3 of its sub-contexts are relevant
[11]. We are currently carrying out research to devise strategies that may be closer to user’s views of

relevance with respect to structured document retrieval.

The point of using different aggregation strategies is that it allows us to investigate the performance of the
acc dimension when using different relevance criteria. For example, the optimistic strategy corresponds
to a loose definition of relevance (where a document is relevant if it contains any relevant component)
and the pessimistic strategy corresponds to a strict definition of relevance (where all components must

be relevant before the structured document is relevant).

3.3 Example

In the previous sections we have shown how we can use existing test collections to create collections of

structured documents. These collections can be of varying width and depth, be based on differing notions

6For instance, in an experiment related to passage retrieval, some relevant documents contained no parts that were

individually assessed relevant by (expert) users [20]. See [14] for a survey on the notion of relevance in IR.

11



of relevance and be of identical or varying structure (homogeneous or heterogeneous). The flexibility of
this methodology is that it allows the creation of diverse collection types from a single original test

collection.

The collections we created for the experiments reported in this paper were based on the CACM collection.
We have described the collection types, we shall now examine the collections in more detail to show the

differences between them.

Table 1 shows the number of root, inner and atomic contexts for the collections. As it can be seen, the
homogeneous collections display a relationship between the atomic contexts and root and inner context.
For instance, the Pair collection has twice as many atomic contexts as root contexts, the Triple collection
has three times as many atomic contexts as root contexts, etc. This does not hold, however, for the

heterogeneous Mix collection, which is combined of a mixture of document types.

Coll. Num. | Num. | Num. Total

Root | Inner | Atomic || Num.

Pair 383 0 766 1149
Pair-E 247 247 741 1235
Triple 247 0 741 988
Quad 180 0 720 900
Pair-2 180 360 720 1260
Triple-3 66 198 594 858
Sext 109 0 654 763
Oct 80 0 640 720
Mix 280 0 700 980

Table 1: Number of contexts

One of the ways we cut down the number of created structured documents was to reduce the number of
multiple occurrences of atomic contexts. As shown in Table 2, we do not exclude all multiple occurrences,
however such occurrences are rare. For, example, in the Triple-3 collection, 20 of the original 3204

documents are used three times among the 594 atomic contexts.

The above two measures are independent of how we decide on the relevance of a context, i.e. whether we
use the optimistic or pessimistic aggregation strategy. The choice of aggregation strategy will affect the
number of relevant contexts. As an example we show in, Figure 2, the number of relevant root contexts
when using the Pair collection, (full figures can be found in [16]). As it can be seen, for the optimistic
aggregation strategy we have almost twice as many relevant root contexts (average 15.53 per query) as
for the pessimistic aggregation strategy (average 7.85 per query). This demonstrates that the aggregation

strategy can be used to create collections with different characteristics.

In this section we described the creation of a number of collections based on the CACM collection. In

the following section we investigate the acc dimension using these collections.

12



Contexts

70

60

50 -

40

30 -

20 -

Occurrence 1 2 3 4 15]6
frequency
Pair 398 |8 | 33 | 14| 7|1
Pair-E 392 |82 | 31|14 |6 |1
Triple 392 |82 | 31|14 |61
Quad 388 | 82 | 28|12 |6 |1
Pair-2 391 | 84 | 32|11 |3 |1
Triple-3 336 |83 20| 8 |00
Sext 362 | 74 122|112 |6 |0
Oct 352 | 75|21 |11 |5 |1
Mix 366 | 85 | 27 |12 | 7 | O

Table 2: Multiple occurrence of contexts

Distribution of relevant root contexts

Average(15.53125)

a1

i

10

20 30 40
Queries

Pair, opt, root

50

60

Contexts

35

30

25 -

20 -

Distribution of relevant root contexts

- Average(7.859375)

LY

{’nﬂ

10

20 30 40
Queries

Pair, pess, root

Figure 2: Distribution of relevant contexts

13

50

60



4 Experiments

Using the different types of collections, and their associated properties, we carried out a number of
experiments to investigate the accessibility dimension for the retrieval of structured documents. With
our set of test collections of structured documents and their various and controlled characteristics, we

studied the effect of different acc values on the retrieval quality.

We targeted the following questions:

1. Is there an optimal setting of the acc parameter for a context with n sub-contexts? (Section 4.1).

An optimal setting is one which gives the best average precision.

2. With high acc values, we expect large contexts to be retrieved with a higher RSV than small
contexts. What is the “break-even point”, i.e. which setting of acc will retrieve large and small

contexts with the same preference? (Section 4.2)

4.1 Optimal values of the accessibility dimension

For all our constructed collections, for increasing values of acc (ranging from 0.1 to 0.9), we computed
the RSV of each context, using the augmentation process described in Section 2. With the obtained
rankings (of root, inner and atomic contexts) and our relevance assessments (optimistic or pessimistic),
we calculated precision/recall values and then the average precision values. The graphs in Figure 3 show
for each accessibility value the corresponding average precision. We show the graphs for Pair, Pair-E
and Mix only. All graphs show a “bell shape”. The optimal accessibility values and their corresponding

maximal precision values are given in Table 3.

Optimistic relevance Pessimistic relevance

collection | max. av. precision | acc | max. av. precision | acc
Pair 0.4702 0.75 0.4359 0.65
Triple 0.4719 0.6 0.4479 0.45
Quad 0.455 0.55 0.4474 0.35
Sext, 0.4431 0.45 0.4507 0.25
Oct 0.4277 0.35 0.4404 0.2
Pair-2 0.4722 0.8 0.4556 0.6
Pair-E 0.4787 0.75 0.4464 0.65
Triple-3 0.4566 0.65 0.4694 0.4
Mix 0.4608 0.75 0.4307 0.5

Table 3: Optimal accessibility values and corresponding maximum precision

Looking at Pair, Triple, Quad, Sext and Oct, we can see that the optimal accessibility values decrease
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Figure 3: Accessibility values and corresponding average precision values

with the number of sub-contexts. This holds for both relevance aggregation strategies. The acc value
can be approximated with the function

1
acc=a- —=

vn
where n is the number of sub-contexts. The parameter a depends on the relevance aggregation strategy.
With the method of least square polynomials (see Appendix), values of a are 1.068 and 0.78 for optimistic

and pessimistic relevance assessments, respectively.

The optimal acc values obtained for Pair and Triple are close to those of Pair-2 and Pair-E, and Triple-3,
respectively. This indicates that for depth-two collections (Pair-2, Pair-E, Triple-3) we can apply the
above estimates for acc independently of the depth of the collection, indicating that approximations

based on the number of sub-contexts seem appropriate.

The acc value for Mix used the same fixed accessibility values for all documents, whether they were Pair
or Triple documents. This could be considered as “unfair”, since, as discussed above, the setting of the
acc for a context depends on the number of its sub-contexts. Therefore, we performed an additional
experiment, where the acc values were set to 0.75 and 0.6, respectively, for contexts with two and three
sub-contexts in the optimistic relevance case, and 0.65 and 0.45 for the pessimistic case. These are the
optimal accessibility values obtained for Pair and Triple (see Table 3). The average precision values are
0.4615 and 0.4301 for optimistic and pessimistic relevance assessments, respectively. Compared to the
values obtained with fixed accessibility values (0.4608 and 0.4307, respectively), there is no significant

change. An experimental setting with a more heterogeneous collection would be more appropriate for
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comparing fixed and variable settings of the acc value.

From the results on the homogeneous collections, we conclude that we can set the acc parameter for a
context according to the function a - ﬁ where a can be viewed as the parameter reflecting the relevance

aggregation strategy.

4.2 Large or small contexts

One major role of the accessibility dimension is to emphasise the retrieval preference of large vs small
contexts. For example, contexts deeper in the structure (small contexts) should be retrieved before
contexts upper (large contexts) in the structure when specific contexts are preferred to more exhaustive
contexts [6]. The acc value gives powerful control regarding exhaustiveness and specificity of the retrieval.
With small acc values, small contexts “overtake” large contexts, whereas with high acc values large

contexts dominate the upper ranks.

For demonstrating and investigating this effect, we produced for each collection with our tf-idf-acc
method defined in Section 2 a ranked list of contexts for different acc values, ranging again from 0.1 to
0.9. For each type of contexts (atomic, inner and root), we calculate its average rank over all retrieval
results for a collection. These average values are then plotted into a graph in relation to the accessibility
values. Figure 4 shows the obtained graphs for Oct, Triple-3 and Mix. In all graphs, the root context
curve starts in the upper left corner, whereas the atomic context curve starts in the lower left corner. For
instance, we see that for the Oct collection, the “break-even point” is around 0.1 and 0.2 for pessimistic

relevance assessment.

With the Triple-3 collection we obtain three break-even points for root-inner, root-atomic, and inner-
atomic. Whereas the average rank of inner nodes does not vary greatly with varying acc values, the
effect on root and atomic contexts is similar to the effect observed with the Oct collection, but with
different break-even points values (e.g. around 0.4 — 0.5 for optimistic relevance assessment). For the Mix

collection the break-even-point locates around 0.5, a higher value than that for the Oct collection.

Whereas as in Section 4.1, the maximum average precision leads to a setting of acc, the experiments
regarding small and large contexts provide us with a second source for setting the acc value, one that

controls the retrieval of exhaustive vs specific document entry points.

5 Conclusion

In this work we investigated how to explicitly incorporate the notion of structure into structured document
retrieval. This is in contrast to other research, (e.g. [3, 15, 8, 20]), where the structure of a document
is only implicitly captured within the retrieval model. The advantage of our approach is that we can

investigate the effect of differing document structures upon the success of structured document retrieval.
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Figure 4: Effect of the accessibility on the types of retrieved contexts

Our approach to structured documents ranks document contexts (document components of varying gran-
ularity) based on a description of their individual content augmented with that of their sub-contexts.
Therefore a document’s context encapsulates the content of all its sub-contexts taking into account their
importance. This was implemented using PRA, a probabilistic relational algebra. In our model, and
implementation, we quantitatively incorporated the degree to which a sub-context contributes to the
content of a super-context using the acc dimension, i.e. higher acc values mean that the sub-context

contributes more to the description of a super-context.

We carried out extensive experiments on collections of documents with varying structure to provide
estimates for acc. This investigation is necessary to allow the setting of acc to values that will facilitate

the retrieval of document components of varying granularity.

The experiments required the development of test collections of structured documents. We developed
a methodology for the automatic construction of test collections of structured documents using stan-
dard test collections with their set of documents, queries and corresponding relevance assessments. The
methodology makes it possible to generate test collections of structured documents with varying width

and depth, based on differing notions of relevance and with identical or varying structure.

The analysis of the retrieval results allowed us to derive a general recommendation for appropriate settings
of the acc value for structured document retrieval. The acc values depend on the number of sub-contexts
of a contexts, and the relevance assessment aggregation strategies. They also depend on the required
exhaustiveness and specificity of the retrieval. These results are being used as the basis for an evaluation

on a real structured document collection.
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Least square polynomials

Consider the experimental values of acc in relation with the square root of the number of sub-contexts.

Assuming a - \/%T where n; ranges in the set {2,3,4,6,8} is the function for estimating the optimal

accessibility values, we apply least square polynomials as follows for calculating a.
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