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Abstra
t

Stru
tured do
ument retrieval aims at retrieving the do
ument 
omponents that best satisfy a

query, instead of merely retrieving pre-de�ned do
ument units. This paper reports on an investigation

of a tf -idf -a

 approa
h, where tf and idf are the 
lassi
al term frequen
y and inverse do
ument

frequen
y, and a

, a new parameter 
alled a

essibility, that 
aptures the stru
ture of do
uments.

The tf -idf -a

 approa
h is de�ned using a probabilisti
 relational algebra. To investigate the

retrieval quality and estimate the a

 values, we developed a method that automati
ally 
onstru
ts

diverse test 
olle
tions of stru
tured do
uments from a standard test 
olle
tion, with whi
h experi-

ments were 
arried out. The analysis of the experiments provides estimates of the a

 values.

1 Introdu
tion

In traditional information retrieval (IR) systems [18℄, retrievable units are �xed. For example, the whole

do
ument, or, sometimes, pre-de�ned parts su
h as paragraphs 
onstitute the retrievable units. The

logi
al stru
ture of do
uments (
hapter, se
tion, table, formula, author information, bibliographi
 item,

et
) is therefore \
attened" and not exploited. Classi
al retrieval methods la
k the possibility to intera
-

tively determine the size and the type of retrievable units, that best suit an a
tual retrieval task or user

preferen
es.

Current resear
h is aiming at developing retrieval models that dynami
ally return do
ument 
omponents

of varying 
omplexity. A retrieval result may then 
onsist of several entry points to a same do
u-

ment, whereby ea
h entry point is weighted a

ording to how it satis�es the query. Authors su
h as

[17, 6, 13, 15, 8℄ have developed and implemented su
h approa
hes. Their models exploit the 
ontent
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and the logi
al stru
ture of do
uments to estimate the relevan
e of do
ument 
omponents to queries,

based on the aggregation of the estimated relevan
e of their related 
omponents. These models have

been based on various formal theories (e.g. fuzzy logi
 [3℄, Dempster-Shafer's theory of eviden
e [13℄,

probabilisti
 logi
 [17, 2℄, and Bayesian inferen
e [15℄). What these models have in 
ommon is that the

basi
 
omponents of their retrieval fun
tion are variants of the two standard term weighting s
hemes,

term frequen
y (tf ) and inverse do
ument frequen
y (idf ). Eviden
e asso
iated with the logi
al stru
ture

of do
uments is often en
oded into one or both of these dimensions.

In this paper, we make this eviden
e expli
it by introdu
ing the \a

essibility" dimension, denoted by

a

. This dimension measures the strength of the stru
tural relationship between do
ument 
omponents:

the stronger the relationship, the more impa
t has the 
ontent of a 
omponent in des
ribing the 
ontent

of its related 
omponents (e.g. [17, 6℄). We refer to the approa
h as tf -idf -a

. We are interested in

investigating how the a

 dimension a�e
ts the retrieval of do
ument 
omponents of varying 
omplexity.

To 
arry out this investigation, we require a framework that expli
itly 
aptures the 
ontent and the

stru
ture of do
uments in terms of our tf -idf -a

 approa
h. We use a probabilisti
 relational algebra

[17℄ for this purpose (Se
tion 2). Our investigation also requires test 
olle
tions of stru
tured do
uments.

Sin
e relevan
e assessments for stru
tured do
uments are diÆ
ult to obtain and manual assessment is

expensive and task spe
i�
, we developed an automati
 approa
h for 
reating stru
tured do
uments and

generating relevan
e assessments from a 
at test 
olle
tion (Se
tion 3). Finally, we perform retrieval runs

for di�erent settings of the a

essibility dimension. The analysis provides us with methods for estimating

the appropriate setting of the a

essibility dimension for stru
tured do
ument retrieval (Se
tion 4).

2 The tf -idf -a

 Approa
h

We view a stru
tured do
ument as a tree whose nodes, 
alled 
ontexts, are the 
omponents of the

do
ument (e.g., 
hapters, se
tions, et
.) and whose edges represent the 
omposition relationship (e.g.,

a 
hapter 
ontains several se
tions). The root 
ontext of the tree, whi
h is unique for ea
h do
ument,

embodies the whole do
ument. Atomi
 
ontexts are do
ument 
omponents that 
orrespond to the last

elements of the 
omposition 
hains. All other nodes are referred to as inner 
ontexts.

Retrieval on stru
tured do
uments takes both the logi
al stru
ture and the 
ontent of do
uments into

a

ount and returns, in response to a user query, do
ument 
omponents of varying 
omplexity (root, inner

or atomi
 
ontexts). This retrieval methodology 
ombines querying - �nding whi
h atomi
 
ontexts mat
h

the query - and browsing along the do
uments' stru
ture - �nding the level of 
omplexity that best mat
h

the query [5℄. Take, for example, an arti
le with �ve se
tions. We 
an de�ne a retrieval strategy that

is to retrieve the whole arti
le if more than three of its se
tions are relevant to the query. Dynami
ally

returning do
ument 
omponents of varying 
omplexity 
an, however, lead to user disorientation and


ognitive overload [6, 7, 10℄. This is be
ause the presentation of do
ument 
omponents in the retrieval

result does not take into a

ount their stru
tural proximity within the do
uments. In the above example,
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depending on the assigned relevan
e status values, the arti
le and its se
tions 
ould be displayed at

di�erent positions in the ranking.

To redu
e user disorientation and 
ognitive overload, a retrieval strategy would be to retrieve (and

therefore display to the user) super-
ontexts 
omposed of many relevant sub-
ontexts before - or instead

of - retrieving the sub-
ontexts themselves. This strategy would prioritise the retrieval of larger super-


ontexts from where the sub-
ontexts 
ould be a

essed through dire
t browsing [6, 5℄. Other strategies


ould favour smaller, more spe
i�
 
ontexts, by assigning smaller relevan
e status values to large 
ontexts.

To allow the implementation of any of the above retrieval strategies, we follow the aggregation-based

approa
h to stru
tured do
ument retrieval (e.g. [17, 11, 2, 15, 6, 8℄). We base the estimation of relevan
e,

or in other words, we 
ompute the retrieval status value (RSV) of a 
ontext based on a 
ontent des
ription

that is derived from its 
ontent and the 
ontent of its sub-
ontexts. For this purpose, we augment the


ontent of a super-
ontext with that of its sub-
ontexts. The augmentation pro
ess is applied to the

whole do
ument tree stru
ture, starting with the atomi
 
ontexts, where no augmentation is performed,

and ending with the root 
ontext.

In this framework, the browsing element of the retrieval strategy is then implemented within the method

of augmentation. By 
ontrolling the extent to whi
h the sub-
ontexts of a super-
ontext 
ontribute to

its representation we 
an dire
tly in
uen
e the derived RSVs.

Via the augmentation pro
ess we 
an also in
uen
e the extent to whi
h the individual sub-
ontexts


ontribute to the representation of the super-
ontext. This way 
ertain sub-
ontexts, su
h as titles,

abstra
ts and 
on
lusions, et
. 
ould be emphasised while others 
ould be de-emphasised.

We model this impa
t of the sub-
ontexts on the super-
ontext by expanding the two dimensions, term

frequen
y, tf , and inverse do
ument frequen
y, idf , standard to IR, with a third dimension, the a

es-

sibility dimension, a

1. We refer to the in
uen
ing power of a sub-
ontext over its super-
ontext as

the sub-
ontext's importan
e. What the a

 dimension represents, then, is the degree to whi
h

the sub-
ontext is important to the super-
ontext.

In the remainder of this se
tion we show, by means of probabilisti
 relational algebra de�ned in [17, 9℄,

how this dimension 
an be used to in
orporate this qualitative notion of 
ontext importan
e for stru
tured

do
ument retrieval.

2.1 Probabilisti
 Relational Algebra

Probabilisti
 Relational Algebra (PRA) is a language model that in
orporates probability theory with the

well known relational paradigm. The algebra allows the modelling of do
ument and query representations

as relations 
onsisting of probabilisti
 tuples, and it de�nes operators, with similar semanti
s to SQL but

1The term \a

essibility" is taken from the framework of possible worlds and a

essibility relations of a Kripke stru
ture

[4℄. In [12℄, a semanti
s of the tf -idf -a

 is de�ned, where 
ontexts are modelled as possible worlds and their stru
ture is

modelled through the use of a

essibility relations.
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with probabilisti
 interpretations, whi
h allow the des
ription of retrieval strategies.

2.1.1 Do
ument and query modelling

A PRA program des
ribing the representation of a stru
tured do
ument 
olle
tion uses relations su
h

as term, termspa
e, and a

. The term relation represents the tf dimension and 
onsists of probabilisti


tuples in the form of tf weight term(index term,
ontext), whi
h assign tf weight values to ea
h (index term,


ontext) pair in the 
olle
tion (e.g. index terms that o

ur in 
ontexts). The value of tf weight 2 [0,1℄ is

a probabilisti
 interpretation of the term frequen
y. The termspa
e relation models the idf dimension by

assigning idf values to the index terms in the 
olle
tion. This is stored in tuples in the form of idf weight

termspa
e(index term), where idf weight 2 [0,1℄. The a

 relation des
ribes the do
ument stru
ture and


onsists of tuples a

 weight a

(
ontext p,
ontext 
), where 
ontext 
 is \a

essible" from 
ontext p with

a probability a

 weight2.

A query representation in PRA is des
ribed by the qterm relation whi
h is in the form of q weight

qterm(query term), where the q weight des
ribes the importan
e of the query term, and query term are

the terms 
omposing the query.

2.1.2 Relational operators in PRA

Similarly to SQL, PRA supports a number of relational operators. Those used in this paper are SELECT,

PROJECT, JOIN, and UNITE. Their syntax and fun
tionalities are des
ribed next.

� SELECT[
riteria℄(relation) returns those probabilisti
 tuples of relation that mat
h the

spe
i�ed 
riteria, where the format of 
riteria is $
olumn=3a value. For example, SE-

LECT[$1=sailing℄(termspa
e) will return all those tuples from the termspa
e relation that have

the term \sailing" in 
olumn one. To store the resulting tuple in a relation we use the following

syntax: new relation = SELECT[
riteria℄(relation). The arity of the new relation equals to the

arity of relation.

� JOIN[$
olumn1=$
olumn2 ℄(relation1,relation2) joins (mat
hes) two relations and returns

tuples that 
ontain mat
hing data in their respe
tive 
olumns, where 
olumn1 spe
i�es a 
olumn of

relation1 and 
olumn2 relates to relation2. The arity of the returned tuples is the sum of the arity

of the tuples in relation1 and relation2. For example, new term=JOIN[$1=$1℄(term,termspa
e) will

populate new term with tuples that have the same value in 
olumn one. The format of the resulting

tuples is new weight new term(index term,
ontext,index term), where the value of new weight is

2On a 
on
eptual level there is no restri
tion on whi
h 
ontexts 
an a

ess whi
h other 
ontexts, so this formalism 
an be

adopted to des
ribe networked ar
hite
tures. In this study, however, we only deal with tree type stru
tures where 
ontext p

and 
ontext 
 form a parent-
hild (super-
ontext and sub-
ontext) relationship.
3Also <;>;�; et
.
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derived from the values of tf weight and idf weight (e.g. based on probability theory, or fuzzy

theory).

� PROJECT[
olumns℄(relation) returns tuples that 
ontain only the spe
i�ed 
olumns

of relation, where the format of 
olumns is $
olumn1,$
olumn2, et
. For example,

new term=PROJECT[$1,$3℄(JOIN[$2=$2℄(term,a

)) returns all (index term,
ontext p) pairs

where the index term o

urs in 
ontext p's sub-
ontext. This is be
ause the JOIN operator re-

turns the tuples new weight(index term,
ontext 
,
ontext p,
ontext 
), where 
ontext p is the super-


ontext of 
ontext 
. Proje
ting 
olumn one and three into new term results in new weight

new term(index term,
ontext p).

� UNITE(relation1,relation2) returns the union of the tuples stored in relation1 and relation2.

For example, new term=UNITE(term,PROJECT[$1,$3℄(JOIN[$2=$2℄(term,a

))) will produ
e a

relation that in
ludes tuples of the term relation and the resulting tuples of the PROJECT opera-

tion. The probabilities of the tuples in new term are 
al
ulated a

ording to probability theory or

fuzzy theory.

Based on the relations des
ribing the do
ument and query spa
e and with the use of the PRA operators

we 
an implement a retrieval strategy that takes into a

ount both the stru
ture and the 
ontent of the

do
uments by augmenting the 
ontent of sub-
ontexts into the super-
ontext, where the augmentation


an be 
ontrolled by the a

 weight values.

2.1.3 Retrieval strategies

Let us �rst model the 
lassi
al tf idf retrieval fun
tion. For this, we use the JOIN and PROJECT

operations of PRA.

t�df index = PROJECT[$1,$2℄(JOIN[$1=$1℄(term,termspa
e))

retrieve t�df = PROJECT[$3℄(JOIN[$1=$1℄(qterm,t�df index ))

Here, the �rst fun
tion 
omputes the tf idf indexing. It produ
es tuples in the form of tf idf weight

t�df index(index term,
ontext). The tf idf weight is 
al
ulated using probability theory and the inde-

penden
e assumption as tf weight � idf weight. The se
ond fun
tion joins (mat
hes) the query terms

with the t�df index terms and produ
es the retrieval results in the form of rsv retrieve t�df(
ontext). The

RSVs given in rsv are 
al
ulated a

ording to probability theory assuming disjointness with respe
t to

the term spa
e (termspa
e) as follows:

rsv(
ontext) =
X

query termi

q weighti � tf weighti(
ontext)� idf weighti

5



We use next the a

 relation to take the stru
ture into 
onsideration. We augment the 
ontent of the

super-
ontext by that of its sub-
ontexts. This is modelled by the following PRA equation.

t�dfa

 index = PROJECT[$1,$3℄(JOIN[$2=$2℄(t�df index,a

))

The augmented relation 
onsists of tuples t�dfa

 weight t�dfa

 index(index term,
ontext p) where 
on-

text p is the super-
ontext of 
ontext 
 whi
h is indexed by index term. The value of t�dfa

 weight

is 
al
ulated as tf idf weight � a

 weight (assuming probabilisti
 independen
e). Based on the t�d-

fa

 index we 
an now de�ne our retrieval strategy for stru
tured do
uments.

t�dfa

 index = PROJECT[$1,$3℄(JOIN[$2=$2℄(t�df index,a

))

retrieve t�dfa

 = PROJECT[$3℄(JOIN[$1=$1℄(qterm,t�dfa

 index ))

retrieve = UNITE(retrieve t�df,retrieve t�dfa

)

The RSVs of the retrieval result are 
al
ulated (by the UNITE operator) a

ording to probability theory

and assuming independen
e:

rsv(
ontext) = P (retrieve tfidf(
ontext) OR retrieve tfidfa

(
ontext))

= P (retrieve tfidf(
ontext)) + P (retrieve tfidfa

(
ontext))�

P (retrieve tfidf(
ontext) AND retrieve tfidfa

(
ontext))

= P (retrieve tfidf(
ontext)) + P (retrieve tfidfa

(
ontext))�

P (retrieve tfidf(
ontext))� P (retrieve tfidfa

(
ontext))

Sin
e the weight of t�dfa

 index is dire
tly in
uen
ed by the weight asso
iated with a

, the resulting

RSVs is also dependent on a

.

2.2 Example

Consider the following 
olle
tion of one do
ument do
1 
omposed of two se
tions, se
1 and se
2. Terms

su
h as sailing, boats, et
. o

ur in the 
olle
tion:

0.1 term(sailing, do
1)

0.8 term(boats, do
1)

0.7 term(sailing, se
1)

0.8 term(gree
e, se
2)

0.4 termspa
e(sailing)

0.3 termspa
e(boats)

0.2 termspa
e(gree
e)

0.1 termspa
e(santorini)

0.8 a

(do
1, se
1)
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0.6 a

(do
1, se
2)

Let us take the query \sailing boats", represented by the following PRA program.

qterm(sailing)

qterm(boats)

Given this query and applying the 
lassi
al tf idf retrieval fun
tion (as des
ribed in the previous se
tion)

to our do
ument 
olle
tion we retrieve the following do
ument 
omponents.

0.28 retrieved t�df(do
1)

0.28 retrieved t�df(se
1)

Both retrieved 
ontexts have the relevan
e status value of 0.28. The above retrieval strategy, however,

does not take into a

ount the stru
ture of the do
ument, e.g. that se
1 whi
h is about sailing is part

of do
1. From a user's point of view, it might be better to retrieve �rst - or only - do
1 sin
e se
1 
an

be a

essed from do
1 by browsing down from do
1 to se
1. Let us now apply our tf idf a

 retrieval

strategy. We obtain:

0.441 retrieve(do
1)

0.28 retrieve(se
1)

This shows that the RSV of do
1 in
reases when we take into a

ount the fa
t that do
1 is 
omposed

of se
1, whi
h is also indexed by the term "sailing". This is done using the stru
tural knowledge stored

in a

. This demonstrates that by using our third dimension, a

, we obtain a ranking that exploits the

stru
ture of the do
ument to determine whi
h do
ument 
omponents should be retrieved higher in the

ranking.

In designing appli
ations for stru
tured do
ument retrieval, we are fa
ed with the problem of determining

the probabilities (weights) of the a

 relation. In our retrieval appli
ations so far, 
onstant a

 values su
h

as 0.5 and 0.6 were used. However we want to establish methods to derive estimates of the a

 values.

To a
hieve this, we require test 
olle
tions with 
ontrolled parameters to allow us to derive appropriate

estimations of the a

 values with respe
t to these parameters. In the following se
tion we present a

method for 
reating simulated test 
olle
tions of stru
tured do
uments that allow su
h an investigation.

3 Automati
 Constru
tion of Stru
tured Do
ument Test Col-

le
tions

Although many test 
olle
tions are 
omposed of do
uments that 
ontain some internal stru
ture [19, 1℄,

relevan
e judgements are usually made at the do
ument level (root 
ontexts) or at the atomi
 
ontext

level. This means that they 
annot be used for the evaluation of stru
tured do
ument retrieval systems,

whi
h would require relevan
e judgements at the root, atomi
 and inner levels.
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Our investigation requires several test 
olle
tions of stru
tured do
uments with di�erent 
hara
teristi
s

(e.g. depth and width of do
ument tree stru
ture). These will enable us to investigate the a

 dimension

under di�erent 
onditions. Sin
e relevan
e assessments for stru
tured do
uments are diÆ
ult to obtain

and manual assessment is expensive and task spe
i�
, it was imperative to �nd a way to automati
ally

build su
h test 
olle
tions. We developed a methodology that allowed us to 
reate diverse 
olle
tions

of stru
tured do
uments and automati
ally generate relevan
e assessments. Our methodology exploits

existing standard test 
olle
tions with their existing queries and relevan
e judgements so that no human

resour
es are ne
essary. In addition our methodology allows the 
reation of all test 
olle
tions deemed

ne
essary to 
arry out our investigation regarding the e�e
t of the a

 dimension for stru
tured do
ument

retrieval.

In Se
tion 3.1 we dis
uss how we 
reated the stru
tured do
uments, in Se
tion 3.2 we dis
uss how we

de
ided on the relevan
e of the do
ument 
omponents, and �nally, in Se
tion 3.3 we show the results of

the methodology using the CACM 
olle
tion4.

3.1 Constru
tion of the do
uments

Our basi
 methodology is to 
ombine do
uments from a test 
olle
tion to form simulated stru
tured

do
uments. That is to treat a number of original do
uments from the 
olle
tion as 
omponents of a

stru
tured do
ument. A simpli�ed version of this strategy was used in [13℄. In the remainder of this

se
tion we shall present a more sophisti
ated version, and deal with some of the issues arising from the


onstru
tion of simulated stru
tured do
uments. To illustrate our methodology, we used a well known

small standard test 
olle
tion, the CACM test 
olle
tion.

Using the methodology of 
ombining do
uments, it is possible to 
reate two types of test 
olle
tions:

homogeneous 
olle
tions in whi
h the do
uments have the same logi
al stru
ture and heterogeneous 
ol-

le
tions in whi
h the do
uments have varying logi
al stru
ture. In our experiments, Se
tion 4, we use

these 
olle
tions to see how the values of a

 
ompare for the two types of 
olle
tions.

By 
ontrolling the number of do
uments 
ombined, and the way do
uments are 
ombined, it is also

possible to generate di�erent types of stru
tured do
uments. We used two main 
riteria to generate

stru
tured do
uments. The �rst 
riterion is width. This 
orresponds to the number of do
uments that

are 
ombined at ea
h level, i.e. how many 
ontexts in a do
ument, and how many sub-
ontexts per


ontext. The se
ond 
riterion is depth. This 
orresponds to how many levels are in the tree stru
ture.

For example a do
ument with no sub-
ontexts (all the text is at one level) has depth of 1, a do
ument

with sub-
ontexts has depth 2, a do
ument with sub-sub-
ontexts has depth 3, and so on. Using these


riteria it is possible to automati
ally generate test 
olle
tions of stru
tured do
uments that vary in width

and depth.

4The 
olle
tion has 3204 do
uments and 64 queries. See www.d
s.gla.a
.uk/idom/ir resour
es/tests 
olle
tions/ for

details of the 
olle
tion.
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For the experiments we des
ribe in Se
tion 4 we 
onstru
ted eight homogeneous 
olle
tions of stru
tured

do
uments. The types of logi
al stru
ture are shown in Figure 1. Pair (EE), Triple (EEE), Quad

(EEEE), Sext (EEEEEE) and O
t (EEEEEEEE) are 
omposed of root and atomi
 
ontexts only. These

test 
olle
tions will be useful in estimating the a

 values based on the width 
riterion. The other


olle
tions Pair-E ((EE)E), Pair-2 ((EE)(EE)) and Triple-3 ((EEE)(EEE)(EEE)) have root, inner and

atomi
 
ontexts. These 
olle
tions are useful for estimating the a

 values based on the depth 
riterion.

Colle
tions of ea
h type were built from the CACM test 
olle
tion where do
uments of the test 
olle
tion,

referred to as \original do
uments", were used to form the atomi
 
ontexts.

d1

e1 e2

Pair (EE)

d1

e1 e2

e3s1

Pair-E ((EE)E)

d1

e1 e2

s1 s2

e3 e4

Pair-2 ((EE)(EE))

d1

e2e1 e3

Triple (EEE)

e1 e2 e3

d1

s1 s2 s3

e4 e5 e6 e7 e8 e9

Triple-3

((EEE)(EEE)(EEE))

e1 e2 e3 e4

d1

Quad (EEEE)

e6e5e4e3e2e1

d1

Sext (EEEEEE)

e6e5e4e3e2e1

d1

e7 e8

O
t (EEEEEEEE)

Figure 1: Types of logi
al stru
ture

We also 
reated one heterogeneous test 
olle
tion, referred to as Mix, whi
h is 
omposed of a mixture of

Pair (EE) and Triple (EEE) do
uments.

We should note here that we are aware that the stru
tured do
uments 
reated in this manner often

will not have a meaningful 
ontent and may not re
e
t term distributions in real stru
tured do
uments.

Nevertheless the use of simulated do
uments does allow for extensive investigation, Se
tion 4, to provide

initial estimates for the a

 values. We are 
urrently using these estimates in our 
urrent work on a

real test 
olle
tion of stru
tured do
uments (XML-based do
uments). We are not, therefore, suggesting

that we 
an use the arti�
ially 
reated test 
olle
tions as substitutes for real do
uments and relevan
e

assessments. Rather we use them as a test-bed to obtain estimates for parameters that will be used in

more realisti
 evaluations. As mentioned before, the ne
essity of using arti�
ial test 
olle
tions 
omes

from the la
k of real test 
olle
tions.

One of the advantages of our approa
h is that we 
an automati
ally 
reate 
olle
tions diverse in type and

size. However we must take steps to ensure that the 
reated 
olle
tions are realisti
 and of manageable

size to allow experimentation.

With a straight 
ombinatori
 approa
h, we 
an derive from a 
olle
tion of N original do
uments the

possible number of stru
tured do
uments would be N2 over 2 for the Pair type of 
olle
tion (that is about

5 million do
uments for the 3204 do
uments of the CACM 
olle
tion). Therefore we require methods

to 
ut down the number of a
tual do
uments 
ombined. In the parti
ular experiments we 
arried out,

we used two strategies to a

omplish this: dis
arding \noisy" do
uments and minimising \dependent"

do
uments. These strategies are based on the assumption that a do
ument whi
h has not been expli
itly

9



marked relevant to a query is 
onsidered not-relevant. Both strategies are based on an analysis of the

atomi
 
ontexts of the stru
tured do
uments, i.e. the original do
uments from the CACM 
olle
tion.

(1) dis
arding \noisy" do
uments: If a do
ument's sub-
ontexts are a mixture of relevant and non-

relevant 
ontexts for all queries in the 
olle
tion then the do
ument is 
onsidered to be noisy.

That is, there is no query in the 
olle
tion for whi
h all sub-
ontexts are relevant or all sub-
ontexts are

non-relevant. We dis
ard all noisy do
uments from the 
olle
tion. This does not mean that we are only


onsidering stru
tured do
uments where all sub-
ontexts are in agreement; we simply insist that they are

in agreement for at least one query in the 
olle
tion5.

(2) minimising \dependent" do
uments: With a straight 
ombination approa
h we also have the

problem of multiple o

urren
es of the same atomi
 
on
epts (the original do
uments in the test


olle
tion appearing many times). This 
ould mean that our simulated stru
tured do
uments may

be very similar - or dependent - due to the overlap between the sub-
ontexts.

Our se
ond approa
h to 
utting down the number of 
reated do
uments is therefore to minimise the

number of dependent do
uments.

We do not, however, want to eradi
ate multiple o

urren
e 
ompletely. First, multiple o

urren
e mimi


real-world situations where similar do
ument parts are used in several do
uments (e.g. web, hypertext,

digital libraries). Se
ond, ex
lusive usage of an atomi
 
ontext requires a pro
edure to determine whi
h

atomi
 
ontext leads to the \best" stru
tured do
ument, whi
h is diÆ
ult, if not impossible to assess.

The way we redu
e the number of multiple o

urren
es is to redu
e the repeated use of atomi
 
ontexts

that are relevant to the same query. That is, we do not want to 
reate many stru
tured do
uments that


ontain the same set of relevant 
ontexts.

Our basi
 pro
edure is to redu
e the number of do
uments whose atomi
 
ontexts are all relevant to the

same query, i.e. 
omposed of 
omponents that are all relevant to the query. The reason we 
on
entrate

on relevant 
ontexts is that these are the ones we use to de
ide whether the whole stru
tured do
ument

is relevant or not, (see Se
tion 3.2).

For ea
h atomi
 
ontext, ei, whi
h is relevant to a query, qj , we only allow ei to appear in one do
ument

whose other atomi
 
ontexts are all relevant to qj . This redu
es multiple o

urren
es of ei in do
uments


omposed entirely of relevant atomi
 
ontexts. As there may be many stru
tured do
uments 
ontaining

ei whose atomi
 
ontexts are relevant, we need a method to 
hoose whi
h of these do
uments to use

in the 
olle
tion. We do this by 
hoosing the do
ument with the lowest noise value. This means that

we prefer do
uments that are relevant to multiple queries over do
uments that are only relevant to one

query. If more than one su
h do
uments exists we 
hoose one randomly.

Both these steps redu
e the number of stru
tured do
uments to a manageable size.

5This approa
h 
an be extended to de�ne the degree of noise we allow in the 
olle
tion.
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3.2 Constru
ting the relevan
e assessments

We have so far des
ribed how we 
reated the stru
tured do
uments and how we 
ut down the potential

number of do
uments 
reated. What we have now to 
onsider are the queries and relevan
e assessments.

The queries and relevan
e assessments 
ome from the standard test 
olle
tions that are used to build

the simulated stru
tured do
uments. However, given that a stru
tured do
ument may be 
omposed of

a mixture of relevant and non-relevant do
uments, we have to de
ide when to 
lassify a root 
ontext

(stru
tured do
ument), or an inner 
ontext, as relevant or non-relevant.

Our approa
h de�nes the relevan
e of non-atomi
 
ontexts as the aggregation of the relevan
e of their

sub-
ontexts.

Let a non-atomi
 
ontext d be 
omposed of k sub-
ontexts e1; :::; ek. For a given query, we have three


ases: all the sub-
ontexts e1 to ek are relevant; all the sub-
ontexts are not relevant; and neither of

the previous two 
ases holds. In the latter, we say that we have \
ontradi
tory" relevan
e assessments.

For the �rst two 
ases, it is reasonable to assess that d is relevant and d is not relevant to the query,

respe
tively. In the third 
ase, an aggregation strategy is required to de
ide the relevan
e of d to a query.

We apply the following two strategies:

� optimisti
 relevan
e: d is assessed relevant to the query if at least one of its sub-
ontexts is assessed

relevant to the query; d is assessed non-relevant if all its sub-
ontexts are assessed non-relevant to

the query.

� pessimisti
 relevan
e: d is assessed relevant to the query if all its sub-
ontexts are assessed relevant

to the query; in all other 
ases, d is assessed non-relevant to the query.

Variants of the above 
ould be used; e.g., d is 
onsidered relevant if 2=3 of its sub-
ontexts are relevant

[11℄. We are 
urrently 
arrying out resear
h to devise strategies that may be 
loser to user's views of

relevan
e with respe
t to stru
tured do
ument retrieval6.

The point of using di�erent aggregation strategies is that it allows us to investigate the performan
e of the

a

 dimension when using di�erent relevan
e 
riteria. For example, the optimisti
 strategy 
orresponds

to a loose de�nition of relevan
e (where a do
ument is relevant if it 
ontains any relevant 
omponent)

and the pessimisti
 strategy 
orresponds to a stri
t de�nition of relevan
e (where all 
omponents must

be relevant before the stru
tured do
ument is relevant).

3.3 Example

In the previous se
tions we have shown how we 
an use existing test 
olle
tions to 
reate 
olle
tions of

stru
tured do
uments. These 
olle
tions 
an be of varying width and depth, be based on di�ering notions

6For instan
e, in an experiment related to passage retrieval, some relevant do
uments 
ontained no parts that were

individually assessed relevant by (expert) users [20℄. See [14℄ for a survey on the notion of relevan
e in IR.

11



of relevan
e and be of identi
al or varying stru
ture (homogeneous or heterogeneous). The 
exibility of

this methodology is that it allows the 
reation of diverse 
olle
tion types from a single original test


olle
tion.

The 
olle
tions we 
reated for the experiments reported in this paper were based on the CACM 
olle
tion.

We have des
ribed the 
olle
tion types, we shall now examine the 
olle
tions in more detail to show the

di�eren
es between them.

Table 1 shows the number of root, inner and atomi
 
ontexts for the 
olle
tions. As it 
an be seen, the

homogeneous 
olle
tions display a relationship between the atomi
 
ontexts and root and inner 
ontext.

For instan
e, the Pair 
olle
tion has twi
e as many atomi
 
ontexts as root 
ontexts, the Triple 
olle
tion

has three times as many atomi
 
ontexts as root 
ontexts, et
. This does not hold, however, for the

heterogeneous Mix 
olle
tion, whi
h is 
ombined of a mixture of do
ument types.

Coll. Num. Num. Num. Total

Root Inner Atomi
 Num.

Pair 383 0 766 1149

Pair-E 247 247 741 1235

Triple 247 0 741 988

Quad 180 0 720 900

Pair-2 180 360 720 1260

Triple-3 66 198 594 858

Sext 109 0 654 763

O
t 80 0 640 720

Mix 280 0 700 980

Table 1: Number of 
ontexts

One of the ways we 
ut down the number of 
reated stru
tured do
uments was to redu
e the number of

multiple o

urren
es of atomi
 
ontexts. As shown in Table 2, we do not ex
lude all multiple o

urren
es,

however su
h o

urren
es are rare. For, example, in the Triple-3 
olle
tion, 20 of the original 3204

do
uments are used three times among the 594 atomi
 
ontexts.

The above two measures are independent of how we de
ide on the relevan
e of a 
ontext, i.e. whether we

use the optimisti
 or pessimisti
 aggregation strategy. The 
hoi
e of aggregation strategy will a�e
t the

number of relevant 
ontexts. As an example we show in, Figure 2, the number of relevant root 
ontexts

when using the Pair 
olle
tion, (full �gures 
an be found in [16℄). As it 
an be seen, for the optimisti


aggregation strategy we have almost twi
e as many relevant root 
ontexts (average 15.53 per query) as

for the pessimisti
 aggregation strategy (average 7.85 per query). This demonstrates that the aggregation

strategy 
an be used to 
reate 
olle
tions with di�erent 
hara
teristi
s.

In this se
tion we des
ribed the 
reation of a number of 
olle
tions based on the CACM 
olle
tion. In

the following se
tion we investigate the a

 dimension using these 
olle
tions.
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O

urren
e 1 2 3 4 5 6

frequen
y

Pair 398 86 33 14 7 1

Pair-E 392 82 31 14 6 1

Triple 392 82 31 14 6 1

Quad 388 82 28 12 6 1

Pair-2 391 84 32 11 3 1

Triple-3 336 83 20 8 0 0

Sext 362 74 22 12 6 0

O
t 352 75 21 11 5 1

Mix 366 85 27 12 7 0

Table 2: Multiple o

urren
e of 
ontexts
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Figure 2: Distribution of relevant 
ontexts
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4 Experiments

Using the di�erent types of 
olle
tions, and their asso
iated properties, we 
arried out a number of

experiments to investigate the a

essibility dimension for the retrieval of stru
tured do
uments. With

our set of test 
olle
tions of stru
tured do
uments and their various and 
ontrolled 
hara
teristi
s, we

studied the e�e
t of di�erent a

 values on the retrieval quality.

We targeted the following questions:

1. Is there an optimal setting of the a

 parameter for a 
ontext with n sub-
ontexts? (Se
tion 4.1).

An optimal setting is one whi
h gives the best average pre
ision.

2. With high a

 values, we expe
t large 
ontexts to be retrieved with a higher RSV than small


ontexts. What is the \break-even point", i.e. whi
h setting of a

 will retrieve large and small


ontexts with the same preferen
e? (Se
tion 4.2)

4.1 Optimal values of the a

essibility dimension

For all our 
onstru
ted 
olle
tions, for in
reasing values of a

 (ranging from 0:1 to 0:9), we 
omputed

the RSV of ea
h 
ontext, using the augmentation pro
ess des
ribed in Se
tion 2. With the obtained

rankings (of root, inner and atomi
 
ontexts) and our relevan
e assessments (optimisti
 or pessimisti
),

we 
al
ulated pre
ision/re
all values and then the average pre
ision values. The graphs in Figure 3 show

for ea
h a

essibility value the 
orresponding average pre
ision. We show the graphs for Pair, Pair-E

and Mix only. All graphs show a \bell shape". The optimal a

essibility values and their 
orresponding

maximal pre
ision values are given in Table 3.

Optimisti
 relevan
e Pessimisti
 relevan
e


olle
tion max. av. pre
ision a

 max. av. pre
ision a



Pair 0.4702 0.75 0.4359 0.65

Triple 0.4719 0.6 0.4479 0.45

Quad 0.455 0.55 0.4474 0.35

Sext 0.4431 0.45 0.4507 0.25

O
t 0.4277 0.35 0.4404 0.2

Pair-2 0.4722 0.8 0.4556 0.6

Pair-E 0.4787 0.75 0.4464 0.65

Triple-3 0.4566 0.65 0.4694 0.4

Mix 0.4608 0.75 0.4307 0.5

Table 3: Optimal a

essibility values and 
orresponding maximum pre
ision

Looking at Pair, Triple, Quad, Sext and O
t, we 
an see that the optimal a

essibility values de
rease
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Figure 3: A

essibility values and 
orresponding average pre
ision values

with the number of sub-
ontexts. This holds for both relevan
e aggregation strategies. The a

 value


an be approximated with the fun
tion

a

 = a � 1p
n

where n is the number of sub-
ontexts. The parameter a depends on the relevan
e aggregation strategy.

With the method of least square polynomials (see Appendix), values of a are 1:068 and 0:78 for optimisti


and pessimisti
 relevan
e assessments, respe
tively.

The optimal a

 values obtained for Pair and Triple are 
lose to those of Pair-2 and Pair-E, and Triple-3,

respe
tively. This indi
ates that for depth-two 
olle
tions (Pair-2, Pair-E, Triple-3) we 
an apply the

above estimates for a

 independently of the depth of the 
olle
tion, indi
ating that approximations

based on the number of sub-
ontexts seem appropriate.

The a

 value for Mix used the same �xed a

essibility values for all do
uments, whether they were Pair

or Triple do
uments. This 
ould be 
onsidered as \unfair", sin
e, as dis
ussed above, the setting of the

a

 for a 
ontext depends on the number of its sub-
ontexts. Therefore, we performed an additional

experiment, where the a

 values were set to 0.75 and 0.6, respe
tively, for 
ontexts with two and three

sub-
ontexts in the optimisti
 relevan
e 
ase, and 0.65 and 0.45 for the pessimisti
 
ase. These are the

optimal a

essibility values obtained for Pair and Triple (see Table 3). The average pre
ision values are

0.4615 and 0.4301 for optimisti
 and pessimisti
 relevan
e assessments, respe
tively. Compared to the

values obtained with �xed a

essibility values (0.4608 and 0.4307, respe
tively), there is no signi�
ant


hange. An experimental setting with a more heterogeneous 
olle
tion would be more appropriate for
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omparing �xed and variable settings of the a

 value.

From the results on the homogeneous 
olle
tions, we 
on
lude that we 
an set the a

 parameter for a


ontext a

ording to the fun
tion a � 1p
n
where a 
an be viewed as the parameter re
e
ting the relevan
e

aggregation strategy.

4.2 Large or small 
ontexts

One major role of the a

essibility dimension is to emphasise the retrieval preferen
e of large vs small


ontexts. For example, 
ontexts deeper in the stru
ture (small 
ontexts) should be retrieved before


ontexts upper (large 
ontexts) in the stru
ture when spe
i�
 
ontexts are preferred to more exhaustive


ontexts [6℄. The a

 value gives powerful 
ontrol regarding exhaustiveness and spe
i�
ity of the retrieval.

With small a

 values, small 
ontexts \overtake" large 
ontexts, whereas with high a

 values large


ontexts dominate the upper ranks.

For demonstrating and investigating this e�e
t, we produ
ed for ea
h 
olle
tion with our tf -idf -a



method de�ned in Se
tion 2 a ranked list of 
ontexts for di�erent a

 values, ranging again from 0:1 to

0:9. For ea
h type of 
ontexts (atomi
, inner and root), we 
al
ulate its average rank over all retrieval

results for a 
olle
tion. These average values are then plotted into a graph in relation to the a

essibility

values. Figure 4 shows the obtained graphs for O
t, Triple-3 and Mix. In all graphs, the root 
ontext


urve starts in the upper left 
orner, whereas the atomi
 
ontext 
urve starts in the lower left 
orner. For

instan
e, we see that for the O
t 
olle
tion, the \break-even point" is around 0:1 and 0:2 for pessimisti


relevan
e assessment.

With the Triple-3 
olle
tion we obtain three break-even points for root-inner, root-atomi
, and inner-

atomi
. Whereas the average rank of inner nodes does not vary greatly with varying a

 values, the

e�e
t on root and atomi
 
ontexts is similar to the e�e
t observed with the O
t 
olle
tion, but with

di�erent break-even points values (e.g. around 0:4�0:5 for optimisti
 relevan
e assessment). For the Mix


olle
tion the break-even-point lo
ates around 0:5, a higher value than that for the O
t 
olle
tion.

Whereas as in Se
tion 4.1, the maximum average pre
ision leads to a setting of a

, the experiments

regarding small and large 
ontexts provide us with a se
ond sour
e for setting the a

 value, one that


ontrols the retrieval of exhaustive vs spe
i�
 do
ument entry points.

5 Con
lusion

In this work we investigated how to expli
itly in
orporate the notion of stru
ture into stru
tured do
ument

retrieval. This is in 
ontrast to other resear
h, (e.g. [3, 15, 8, 20℄), where the stru
ture of a do
ument

is only impli
itly 
aptured within the retrieval model. The advantage of our approa
h is that we 
an

investigate the e�e
t of di�ering do
ument stru
tures upon the su

ess of stru
tured do
ument retrieval.
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Figure 4: E�e
t of the a

essibility on the types of retrieved 
ontexts

Our approa
h to stru
tured do
uments ranks do
ument 
ontexts (do
ument 
omponents of varying gran-

ularity) based on a des
ription of their individual 
ontent augmented with that of their sub-
ontexts.

Therefore a do
ument's 
ontext en
apsulates the 
ontent of all its sub-
ontexts taking into a

ount their

importan
e. This was implemented using PRA, a probabilisti
 relational algebra. In our model, and

implementation, we quantitatively in
orporated the degree to whi
h a sub-
ontext 
ontributes to the


ontent of a super-
ontext using the a

 dimension, i.e. higher a

 values mean that the sub-
ontext


ontributes more to the des
ription of a super-
ontext.

We 
arried out extensive experiments on 
olle
tions of do
uments with varying stru
ture to provide

estimates for a

. This investigation is ne
essary to allow the setting of a

 to values that will fa
ilitate

the retrieval of do
ument 
omponents of varying granularity.

The experiments required the development of test 
olle
tions of stru
tured do
uments. We developed

a methodology for the automati
 
onstru
tion of test 
olle
tions of stru
tured do
uments using stan-

dard test 
olle
tions with their set of do
uments, queries and 
orresponding relevan
e assessments. The

methodology makes it possible to generate test 
olle
tions of stru
tured do
uments with varying width

and depth, based on di�ering notions of relevan
e and with identi
al or varying stru
ture.

The analysis of the retrieval results allowed us to derive a general re
ommendation for appropriate settings

of the a

 value for stru
tured do
ument retrieval. The a

 values depend on the number of sub-
ontexts

of a 
ontexts, and the relevan
e assessment aggregation strategies. They also depend on the required

exhaustiveness and spe
i�
ity of the retrieval. These results are being used as the basis for an evaluation

on a real stru
tured do
ument 
olle
tion.
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Least square polynomials

Consider the experimental values of a

 in relation with the square root of the number of sub-
ontexts.

Assuming a � 1p
ni

where ni ranges in the set f2; 3; 4; 6; 8g is the fun
tion for estimating the optimal

a

essibility values, we apply least square polynomials as follows for 
al
ulating a.

err(a) =
X
i

�
yi � a � 1p

ni

�2

err(a)

Æa
= 2 �

X
i

�
yi � a � 1p

ni

�
� 1p

ni

0 =
X
i

�
yi �

1p
ni

� a � 1

ni

�

a �
X
i

1

xi
=
X
i

yi �
1p
ni

a =

P
i
yi � 1p

niP
i

1

ni
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