Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Control of the nematic-isotropic phase transition by an electric field

Mottram, N.J. and Care, C.M. and Cleaver, D.J. (2006) Control of the nematic-isotropic phase transition by an electric field. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 74 (041703). ISSN 1063-651X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We use a relatively simple continuum model to investigate the effects of dielectric inhomogeneity within confined liquid-crystal cells. Specifically, we consider, in planar, cylindrical, and spherical geometries, the stability of a nematic-isotropic interface subject to an applied voltage when the nematic liquid crystal has a positive dielectric anisotropy. Depending on the magnitude of this voltage, the temperature, and the geometry of the cell, the nematic region may shrink until the material is completely isotropic within the cell, grow until the nematic phase fills the cell, or, in certain geometries, coexist with the isotropic phase. For planar geometry, no coexistence is found, but we are able to give analytical expressions for the critical voltage for an electric-field-induced phase transition as well as the critical wetting layer thickness for arbitrary applied voltage. In cells with cylindrical and spherical geometries, however, locally stable nematic-isotropic coexistence is predicted, the thickness of the nematic region being controllable by alteration of the applied voltage.