Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Experimental study of coaxial free-electron maser based on two-dimensional distributed feedback

Konoplev, I.V. and McGrane, P. and He, W. and Cross, A.W. and Phelps, A.D.R. and Whyte, C.G. and Ronald, K. and Robertson, C.W. (2006) Experimental study of coaxial free-electron maser based on two-dimensional distributed feedback. Physical Review Letters, 96 (3). 035002/1-035002/4. ISSN 0031-9007

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The first experimental study of a coaxial free-electron maser (FEM) based on two-dimensional (2D) distributed feedback is presented. A new type of cavity formed with coaxial 2D surface photonic band gap structures was used. The FEM was driven by a large diameter (7 cm), high-current(500 A), annular electron beam of energy 475 keV. By tuning the amplitude of the undulator or guide magnetic field, modes associated with the different band gaps of the 2D structures were excited. The Ka-band coaxial FEM generated 15 MW of radiation with a 6% conversion efficiency, in excellent agreement with theory.