
A COLLABORATIVE APPROACH TO LEARNING PROGRAMMING:

A HYBRID LEARNING MODEL

Linxiao Ma, John Ferguson, Marc Roper, John Wilson, Murray Wood

Department of Computer and Information Sciences
The University of Strathclyde, Glasgow G1 1XH, UK

 Email: {Linxiao.Ma, jf, marc, jnw, murray }@cis.strath.ac.uk
 URL: http://www.cis.strath.ac.uk/people/biography/{linxiao, jf, marc, jnw, murray}/

ABSTRACT
The use of cooperative working as a means of
developing collaborative skills has been recognised
as vital in programming education. This paper
presents results obtained from preliminary work to
investigate the effectiveness of Pair Programming
as a collaborative learning strategy and also its
value towards improving programming skills within
the laboratory. The potential of Problem Based
Learning as a means of further developing
cooperative working skills along with problem
solving skills is also examined and a hybrid model
encompassing both strategies outlined.

Keywords

Collaborative Learning, Programming Learning, Pair
Programming, Problem-Based Learning.

1. INTRODUCTION
Recent years have seen much discussion and
concern regarding approaches to teaching and
learning programming [1, 10, 11]. While a great deal
of the debate has centered on the merits of an early
use of an object orientated approach as opposed to
a procedural approach [4] other concerns relate to
the lack of early fostering of communication and
collaboration skills between students; skills that are
seen by industry as paramount and essential for
team based software development. Many current
approaches to teaching programming involve
students spending much of their time alone with
support restricted to demonstrator help during
laboratory sessions. This approach is viewed by
many as being inconsistent with a student’s future
professional life where they have to work with
others [10]. It follows that a collaborative learning

model would appear a more consistent approach in
preparing students for their future career.

In the academic year 2003/2004, Pair Programming
(PP) was employed as a collaborative learning
model to support the introductory course
“Programming Foundations” at the University of
Strathclyde. Early results from this initiative look
promising and show that PP has not only been well
received by students, but overall student
performance in laboratory work has improved.
Current effort is focused on exploring the possible
advantages of extending collaborative working to
other areas of the learning process, in particular the
potential of Problem Based Learning as a strategy
for developing problem formulation and reflection
skills.

2. PAIR PROGRAMMING

2.1 Background
Pair Programming refers to a form of collaborative
working where two programmers work continuously
on the same design, algorithm, code, or test. One of
the programmers, the driver, controls the mouse
and keyboard actively writing the code, while the
navigator simultaneously reviews the work to detect
mistakes and provide strategic suggestions [14]. It
is an essential aspect of the approach that the two
programmers reverse roles between driver and
navigator after a designated time period; code
written by only one member of the pair is not
acceptable [9].

Following its wide acceptance in industry [12], the
significance of PP within education has also been
widely recognized. Firstly, it provides the potential
for students to acquire knowledge through
interaction with their partner [8]. Secondly, PP
produces pair pressure between students helping
students to focus on tasks and encouraging them to
perform: most pair members are reluctant to
disappoint their partner [13]. Thirdly, working in
pairs helps ensure that students are more efficient
at detecting and removing mistakes, reducing the
student’s sense of frustration in programming
practice.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission.

Some related research [9, 10, 14, 15] has been
done to evaluate the effects of PP in education. In
particular a number of experiments were carried out
in the University of California Santa Cruz and in
North Carolina State University to assess the
efficacy of PP in introductory programming courses.
The results from these experiments were
encouraging and showed that students had a
positive attitude toward PP and were more likely to
continue study as Computer Science majors.

2.2 Pair Programming at Strathclyde

2.2.1 Course Setting

The “Programming Foundations” course at
Strathclyde employs JAVA to provide students with
a foundation in computer programming. The course
consists of two one-hour lectures and one two-hour
laboratory session each week. In the laboratory
students complete a weekly assignment under the
supervision of laboratory demonstrators. Students
are assessed in mid-semester tests (20%) and in a
final written examination (80%). In the academic
year of 2003-2004, there were 274 students
registered on this course, and while practical
exercises were consistent with previous years,
students were asked to work in pairs to complete
weekly assignments.

At the end of the first semester an informal survey
was carried out to assess the effects of PP. Data
was collected in three ways: student test
performances; questionnaires on students’
experiences with PP; laboratory demonstrators’
observations. In the following section we report the
findings and discuss their implications.

2.2.2 Result & Discussion

Performance in Tests

Two mid-term tests were performed in the first
semester where students were asked to complete a
small program that was evaluated on a 5-point
scale. If a student completed all the functions
correctly, they were awarded a score of “5”. In the
academic year of 2003-2004 when PP was
employed more students obtained the highest score
in both tests compared to the pervious year without
PP, Figure 1.

Experiences with Pair Programming

At the end of the first semester students were asked
to complete a questionnaire to gauge their

experiences. The questionnaire covered the
following areas:

• Effect of PP on understanding course material;

• Helpfulness in laboratories;

• Enjoyment;

• Effect of PP on individual test performance;

• Pairing students with different abilities;

• Students’ views on benefits and pitfalls of PP;

• Should it be used again in the second
semester?

More than half of all students (54%) believed PP
had a positive effect on their understanding of the
course material.

There were many more students (65%) who thought
PP was helpful for them completing tasks.

Figure 4: Enjoyment

57%29%

14% Postive
Neutral
Negative

More than half of the students claimed the PP was
enjoyable.

Figure 5: Individual Test Performance

40%

55%

5% Postive Effect
Neutral Effect
Negative Effect

40% of students thought PP had a positive effect,
while only 5% claimed the opposite view. More
students (55%) presented a neutral view toward to
this question.

Most students (75%) liked to be paired with
students of equal ability while a quarter of students
preferred to work with students of perceived higher
ability. Interestingly, there was only one student who
wanted to be paired with a student of weaker ability.

The majority of students believed shared knowledge
helped their understanding of the course contents.
A few students thought PP was helpful for detecting
and correcting mistakes, while only a small number
claimed PP reduced the time taken. Additional
benefits claimed by students included increased

Figure 1: Students' Performance in Test

0%
20%
40%
60%
80%

100%

Test1 Test2

2002-2003

(Without PP)

2003-2004

(With PP)

Figure 2: Understanding of Course

54%40%

6%
Positive Effect
Neutral Effect
Negative Effect

Figure 3: Helpfulness in Laboratories

65%

21%

14% Positive
Neutral
Negative

confidence, less boredom, and a wider range of
alternative solutions produced.

The main concern of PP was the imbalance in effort.
Many students identified problems that occurred
when one of the pair was not as well prepared as
the other. Compatibility between members in the
pair was also seen as a problem by many students.
Some students claimed they could not understand
the program written by their partner. In addition,
some students thought it was difficult to get on with
the other person. One possible reason for these
problems was that many students did not have
much prior experience or skills in communicating
with their partner in a collaborative setting. A major
benefit of PP is its ability to provide an opportunity
for students to improve their communication
experience and skills. This implies that compatibility
may be viewed as a problem from a student’s
perspective, whereas it is in reality the growing
pains of a necessary new skill, essential to their
future careers.

The majority of students (58%) claimed that they
would like to continue to work in pairs in the
following programming course. A higher than
expected number of students (42%) had the
opposite view. One possible reason for this was the
perceived imbalance of contribution within pairs,
leading to students who made a high contribution
feeling that the activity was unfair.

Laboratory Demonstrators Observations

Some impressions on student performance in the
laboratories were also collected through personal
observations and feedback from laboratory
demonstrators.

Firstly, it was noted that students were working
more efficiently in their lab-based assignments and
managing to complete the tasks quicker. Secondly,
students were better prepared before arriving at the
laboratory. Thirdly, there was increased
communication between students, and between
students and demonstrators with students far more
likely to ask questions than in previous years. On
the other hand, several problems were found with
some students being overly reliant on their partner.
Also, several students did not change roles between
driver and navigator and some students worked
alone, even when they had been assigned a partner.

2.2.3 Summary

Overall it would appear that PP has been accepted
as an efficient learning method with, on the whole, a
positive effect toward a student’s experience in
learning programming. However, the imbalance of

contribution between members within pairs raises
significant concerns that need to be addressed.

While Pair Programming holds promise for
collaborative working and improving student
programming skills, it has been recognized by the
authors and by others [11] that students also exhibit
difficulties engaging with material presented in
lectures and transferring knowledge to practical
problem solving. One approach that has received a
great deal of attention in helping to overcome this
difficulty is Problem Based Learning (PBL). In this
model students are first challenged with a problem
that motivates them to seek relevant knowledge and
to integrate this knowledge into the problem solving
process.

3. PROBLEM-BASED LEARNING
PBL has its roots in graduate medical teaching but
has now been adopted in a wide range of
educational domains, including computer science.
Within PBL students acquire knowledge through
solving real-life problems, working collaboratively in
small groups. Detailed information on how to tackle
a problem is often not provided directly to students,
although resources are available to support them in
formulating solutions [5, 6].

The skills developed by PBL are seen as important
tools for life-long learning and essential to a
student’s future career. These can be summarized
as [2]:

• developing reasoning and problem solving
skills;

• promoting interpersonal skills and ability to work
as team members;

• developing independent, self-directed critical
thinking and learning skills.

PBL has received considerable attention as a
learning strategy within computing education [6],
with implementations in courses ranging from Web
Site Development to Computer Networking [3].
Programming courses are also seen as a suitable
domain for the adoption of PBL [7,11].

It is envisaged that PBL will provide an opportunity
to deliver a range of materials in order to satisfy the
demands of a diverse range of student abilities,
ensuring that weaker students are not confused and
stronger ones, bored. Furthermore, this shift of
balance towards more practical work should
improve the current situation where some students
still lack confidence in their programming skills,
even after 2 semesters.

3.1 Categories of PBL
Ellis and others [6] divide PBL approaches into
three categories, namely problem-based approach,
guided problem-based learning, and full problem-
based learning. In the first category, lectures are

Figure 6: Use in Second Semester

58%
42% Continue to Use PP

No PP Anymore

Figure 7: A progressive approach to PBL adoption

Novice Students Intermediate Students Advanced Students

The problem is simple and well-
structured

The problem is complex and ill-structured
The problem is defined by students
themselves.

Lectures present the conceptual
knowledge

Students study the conceptual knowledge by
themselves, but lectures establish the topics

Students are fully self-directed in their
learning of conceptual knowledge

Students work in a group Students work in a group Students work in a group

The group activities are well- structured
and well guided by lecturers

The group activities are designed and arranged
by students themselves.

The group activities are designed and
arranged by students themselves.

The Learning resources are well refined
or chosen by lecturers.

Lectures suggest a set of possible learning
resources to students. Students should pick up
the relevant materials by themselves.

Students look for learning materials by
themselves

employed to deliver the course material, supported
by problems designed to engage students with the
material. In guided problem-based learning some
lectures are given to present only basic fundamental
background knowledge and students then work in
groups to solve problems. In addition, a range of
resources are provided to allow students to acquire
more detailed knowledge. Finally, in full problem-
based learning, students work in groups and
knowledge is no longer formally distributed directly
by lectures, with the problem itself guiding and
driving the entire learning process.

Selecting the appropriate PBL method will normally
be based on the nature of the course and the ability
of the students. In programming courses the
approach taken will normally be based on the
students’ programming ability and problem solving
experience. For the novice programmer, who may
have come directly to university from a teacher-
centered school environment, it would be
considered by many to be a high risk strategy
introducing them to programming through solving
complex, ill-structured problems. At this stage, it
would seem reasonable to challenge students with
simple, well-structured problems, with the lecturer
providing guidance on the course content along with
the problem solving process. When students have
accumulated sufficient well-developed, self-directed
learning skills, the full problem-based learning
approach would then be introduced.

Based on the second and third category of PBL
methods outlined by Ellis, we have developed a
three stage approach to PBL based on the ability of
students, Figure (7).

For novice programmers, conceptual knowledge is
presented in lectures and students work in groups
with simple, well structured problems that cover the
concepts presented in the lectures. When students
have accumulated sufficient experience of problem
solving and programming they can progress to the
intermediate model where problems are more
complex, ill-structured and there is no formal
exposition of conceptual knowledge from lecturers.
At this stage students have greater control over
group activities and learning resources. In the final

approach students are presented with greater
challenges and have more freedom in controlling the
problem solving process. Students define the
problem within the context of course topics, and are
fully self-directed in group working and information
gathering.

3.2 A Hybrid Approach
The programming learning process can be divided
into three phases, namely the explore phase, the
practice phase, and the summary phase, Figure 8.
In the explore phase, students analyze the problem,
absorb the relevant knowledge, such as basic
concepts, essential library classes and relevant
algorithms, then discuss possible solutions. The
practice phase is where students obtain their
programming experience and skills through
implementing their solution. Finally, in the summary
phase, students analyze their achievements and
review any problems they encountered.

It is apparent that as a group-based learning model,
PBL is beneficial for both the explore and the
summary phases. However, there is no substantial
evidence to support PBL as an efficient way of
optimizing a student’s practice in programming and
it is here that PP provides a pivotal role, with the
combination of PBL and PP expected to provide
comprehensive support for learning.

Compared to the traditional first year programming
course, the proposed restructured course at
Strathclyde has three main differences. Firstly,
students will work in groups, or clusters of the order
of three pairs, to solve problems in each learning
unit, rather than just carrying out laboratory based
work individually. Each learning unit begins with a
problem and the entire learning process is problem-
driven and the role of lectures is to present the
fundamental concepts that are useful for developing
a solution to the problem. The second difference is
that there will be two additional group meetings for
students; one group meeting is used by students to
analyze the problem and discuss possible solutions;
the other group meeting allows students to
summarize their achievements and reflect on any
problems encountered. The final difference is the

continued use of PP in the laboratory work to
optimize their programming practice.

4. CONCLUSION
The development of collaborative skills has been
recognized as imperative in programming education.
In this paper we have presented results from
preliminary work to implement PP as a collaborative
learning model within our introductory first year
course “Programming Foundations”. Early results
look promising and show that PP has potential
within the context of an introductory programming
course to enhance the development of both
programming practice and collaborative skills.
These early indicators have provided impetus for us
to expand the benefits of collaborative learning to
seek solutions for promoting problem solving skills.
Problem-based learning offers a potential solution to
this difficulty.

In this paper a hybrid model that integrates Pair
Programming and Problem-Based Learning is
presented. This hybrid model is expected to provide
a collaborative learning framework where students
can harness the benefits of PBL when they study
conceptual knowledge as well as utilize the
advantages of PP when they apply this knowledge.

5. REFERENCES
[1] Barg M., Fekete A., Greening T., Hollands O.,

Kay J., Kingston J.H., Problem-based learning
for foundation computer science courses,
Computer Science Education 10 (2000), 1--20.

[2] Barrows H., Problem-based, self-directed
learning, the Journal of the American Medical
Association (JAMA), Vol.250, (1983).

[3] Beaumont C., Sackville A., Cheng C., Identifying
Good Practice in the Use of PBL to teach
Computing. ITALICS e-journal, Vol.3 Issue.2
(2004).

[4] Bruce K., “Controversy on How to Teach CS 1:
A Discussion on the SIGCSE-members Mailing
List”, SIGCSE Bulletin (2004).

[5] Boud D., Feletti G., The Challenge of Problem
Based Learning. Kogan Page, London. (1991)

[6] Ellis A., Carswell L., Bernat A., Deveaux D.,
Frison P., Meisalo V., Meyer J., Nulden U.,
Rugelj J., Tarhio J., Resources, tools, and
techniques for problem based learning in
computing. In Work Group report of the 3

rd

annual SIGCSE/SIGCUE ITiCSE conference
(1998).

[7] Fekete A., Greening T., Kingston J., Conveying
technical content in a curriculum using Problem-
Based Learning. Proceedings of the Third
Australasian Conference of Computer Science
Education. ACM Press: Brisbane. (1998)

[8] Flor N., Hutchins N., Analyzing Distributed
Cognition in Software Teams: A Case Study of
Team Programming During Perfective Software
Maintenance, presented at Empirical Studies of
Programmers: Fourth Workshop (1991).

[9] McDowell C., Werner L., Bullock H., Fernald J.,
The Impact of Pair Programming on Student
Performance, Perception and Persistence.
Proceedings of the 25th International
Conference on Software Engineering (2003).

[10] Nagappan N., Williams L., Ferzli M., Yang K.,
Wiebe E., Miller C., Balik S., Improving the CS1
Experience with Pair Programming. Presented
as SIGCSE (2003).

[11] O’Kelly J., Bergin S., Gaughran P., Dunne S.,
Ghent J., Mooney A., Initial finding on the impact
of an alternative approach to Problem Based
Learning in Computer Science, present at
Pleasure By Learning (PBL) conference,
Cancun, Mexico (2004).

[12] Williams L., The Collaborative Software
Process. PhD. Dissertation. University of Utah,
Salt Lake City (2000).

[13] Williams L., Kessler R., The Effects of “Pair-
Pressure” and “Pair-Learning” on Software
Engineering Education, in Thirteen Conference
on Software Engineering Education and
Trainning. Austin Texas: IEEE Computer Soc
(2000).

[14] Williams L., McDowell C., Nagappan N., Fernald
J., Werner L., Building Pair Programming
Knowledge through a Family of Experiments,
Proceedings ISESE (2003)

[15] Williams L., Yang K., Wiebe E., Ferzli M., Miller
C., Pair Programming in an introductory
Computer Science Course: Initial Results and
Recommendations. Presented at OOPSLA
Educatior’s Symposium, Seattle, WA (2002)

Lecture

Group Meeting for students to
analyze the problem and
discuss possible solutions

Laboratory Session to
implement the solution

Group meeting for students to
summarize achievements and
reflect

Explore

Phase

Practice

Phase

Summary

Phase

Independent Study

Problem

Figure 8: Learning Lifecycle Model

