Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Electrochemical behaviour of aqueous SO2 at polycrystalline gold electrodes in acidic media. A voltammetric and in-situ vibrational study. Part II. Oxidation of SO2 on bare and sulphur-modified electrodes

Quijada, C. and Morallon, E. and Vazquez, J.L. and Berlouis, L.E.A. (2001) Electrochemical behaviour of aqueous SO2 at polycrystalline gold electrodes in acidic media. A voltammetric and in-situ vibrational study. Part II. Oxidation of SO2 on bare and sulphur-modified electrodes. Electrochimica Acta, 46 (5). pp. 651-659. ISSN 0013-4686

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The electrochemical oxidation of SO2 on polycrystalline gold electrodes has been studied by means of cyclic voltammetry and in situ vibrational techniques. On bare gold electrodes, SO2 is irreversibly oxidised on forward scans at 0.6 V/RHE, featuring a diffusion-limited peak. Oxidation is inhibited by the formation of chemisorbed oxygen. A SO2 anodic current rise occurs on the reverse scan in parallel with the reduction of the metal oxide layers. As shown by FT-IR, oxidation proceeds to yield a mixture of soluble S(VI) species as stable reaction products. From vibrational spectra and results from the irreversible adsorption method, it follows that no strongly adsorbed S-O-like residues are present onto the gold surface in the region 0.3-0.5 V/RHE. On sulphur-modified electrodes improved electrocatalysis is manifested by the shift of the diffusion-limited peak to lower potentials. The best performance is observed at a sulphur coverage of 0.5. At higher coverage, sulphur adlayers impart lower catalytic efficiency and eventually show strong poisoning properties. This behaviour is exhibited by sulphur adlayers generated either in situ by SO2 reduction or ex situ by sulphide adsorption/oxidation in acidic or alkaline media.