Picture of flying drone

Award-winning sensor signal processing research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in award-winning research into technology for detecting drones. - but also other internationally significant research from within the Department of Electronic & Electrical Engineering.

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Buried dielectric mirrors for the lateral overgrowth of GaN-based microcavities

Martin, R.W. and Edwards, P.R. and Pecharroman-Gallego, R. and Trager-Cowan, C. and Kim, T. and Kim, H.S. and Kim, K.S. and Watson, I.M. and Dawson, M.D. (2001) Buried dielectric mirrors for the lateral overgrowth of GaN-based microcavities. Physica Status Solidi A, 183 (1). pp. 145-149. ISSN 1862-6300

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The use of lateral overgrowth techniques to develop III-nitride microcavities with both mirrors fabricated from very highly reflecting dielectric multilayers (e.g. SiO2/ZrO2) will be discussed. Multilayer mirror stacks with broad high reflectivity stop-bands and peak reflectivities in excess of 99% at wavelengths near the emission energies of typical InGaN/GaN quantum well structures, have been patterned in order to be compatible with subsequent lateral epitaxial overgrowth or pendeoepitaxy. Improvements in material quality resulting from lateral overgrowth above single layer masks are demonstrated using spatially resolved photoluminescence and cathodoluminescence imaging.