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Abstract. Designing data structures for use in mobile devices requires
attention on optimising data volumes with associated benefits for data
transmission, storage space and battery use. For semi-structured data,
tree summarisation techniques can be used to reduce the volume of struc-
tured elements while dictionary compression can efficiently deal with
value-based predicates. This project seeks to investigate and evaluate an
integration of the two approaches. The key strength of this technique is
that both structural and value predicates could be resolved within one
graph while further allowing for compression of the resulting data struc-
ture. As the current trend is towards the requirement for working with
larger semi-structured data sets this work would allow for the utilisation
of much larger data sets whilst reducing requirements on bandwidth and
minimising the memory necessary both for the storage and querying of
the data.

1 Introduction

Data intensive applications in mobile environments are increasingly dependent
on processing semi-structured data. Such data is typically represented in a ver-
bose format that is incompatible with the engineering constraints provided by
small computing platforms. The development of mobile computing is associated
with growth in the information available on the Internet and also in users ex-
pectations of the service that they will receive from mobile applications. The
continuing development of miniaturised computing platforms that is necessary
to provide for the expansion of mobile applications presents on-going engineering
challenges in terms of minimising power use and at the same time maximising
throughput. XML is a representation of semi-structured data that is widely used
in distributed, Internet-based applications. The verbose native representation of
semi-structured data needs to be replaced by an optimised physical structure for
it to be a viable resource on mobile systems. This physical structure must com-
bine the qualities of direct addressability with in-built indexing. Optimisations
also need to be sought for query processing on such structures.



2 Background

Recently the memory, battery power and processor capabilities of mobile de-
vices have increased greatly, but despite these advances the memory available
to the system remains a critical resource for data-intensive mobile applications.
Increasingly, mobile services rely on semi-structured data, for the storage and
transmission of data. Care needs to be taken in the representation of such data
to support optimal processing. Indexing can be achieved by external data struc-
tures although the original data needs to be retained to validate queries.

Conceptually semi-structured data can be represented as a graph with ver-
tices used to indicate data items and structural interrelationships shown by arcs,
arbitrary graphs can also be encoded in XML representation through the use of
special ID:IDREF pairs. The structural elements can be compressed by retain-
ing only a skeleton representation of the graph and dictionaries can be used to
support non-redundant storage of leaf values. Although graphs are an accurate
representation of semi-structured data, tree representations provide a useful sim-
plification. A sequence of distinct arcs in a graph is called a path. Paths may be
either chains (if the vertices in the path are distinct) or circuits (if the initial
vertex and the final vertex are the same). Removing a single arc from each of
the circuits in a graph produces a spanning tree that still connects all the data
items in the graph. By removing different arcs, a number of different spanning
trees can be produced from a single graph.

3 Related Work

Numbering schemes can be used to provide a basis for connecting structural
indexes with value representations. Dietz [Die82] describes a data structure for
efficient presentation of trees based on linked lists. An application of this struc-
ture is the determination of the ancestor-descendant relationship based on the
pre- and post-order numbering schemes. Pre-order numbering schemes visit the
root node first and then recursively traverse the rest of the tree. Post-order
numbering scheme schemes visit parent nodes after all subtrees rooted by their
children have been traversed recursively. Grust [Gru02] analysed the proper-
ties of Dietz’s numbering scheme further and identified that the original pre-
and post-order numbering scheme can also be used to answer queries along the
previous/following axis of XPath. The scheme was extended to include direct
references to parent nodes and type information (attribute node type or tag
name and element) which allows for the storage of the complete XML document
in a single relation. All XPath axis operations can be performed on the resulting
relation with the help of only relational indices.

Work on integrating different kinds of index structures for semi-structured
data was carried out by McHugh [MW99], who investigated heuristics to deter-
mine when to use the four specific forms of indices (value, text, link and path
index). Halverson et al. [HB+03] identify the need to combine pattern match-
ing techniques based on inverted lists with the navigational approach typical for



XML tree traversal algorithms pointing out the lack of integration between these
two lines of research. Vectorization of XML, developed by Choi and Buneman
[CB03,BCF+05], combines the XMill [LD00] approach for compact represen-
tation of atomic data with the approach for skeleton compression by sharing
subtrees [BGK03]. The skeleton of typical XML documents is small and can be
kept in memory while the data is only used in the later stages thereby avoiding
unnecessary I/O operations. Kaushik et al [KK+04] extend their original work
[KB+02,KS+02] on structural indices for path expressions to include keyword
constraints on the contained atomic data. They propose a general strategy to
combine structural indices with inverted lists in order to address this class of
queries efficiently and test their approach using the Niagara system [ND+01].
As their value indices are based on techniques developed in the context of in-
formation retrieval systems, their resulting query system includes support for
finding the k most relevant results. Structural and index values are combined by
Amato et al [ADZR03] by extending the structure to incorporate the values for
some elements or by incorporating B

+
−Tree value indexes within the structure.

In a mobile data context the caching of query results allows for an improve-
ment in response time and throughput data in the system. Gupta and Srimani
[GS02] introduced a data caching system which was predisposed to repeated dis-
connections often associated with such systems. Semantic caching, the caching of
semantic descriptions of previous queries and results, allows for future queries to
be partially evaluated and trimmed to request only the data required that is not
held in the current cache. Dar et al [DFJ+96] proposed this scheme and showed
its advantages over both page caching and tuple caching, Ren et al [RDK03]
extended this work especially in the forming of the remainder queries. Lui et
al [LLL05] further extend semantic caching into distributed environments and
multi-dimensional queries.

4 Motivation

Queries over semi-structured data typically include both structural and value
predicates. Query 1 provides an example that seeks to return the authors of
books with the title ‘Databases’. Figure 1 shows the data graph of the example
source with vertex identifiers added to each node.

Query 1 //book[/author & /title/DATA=‘Databases’]

Since Query 1 contains only forward facing query axes, it can always be answered
by a single traversal of the data structure. However, this technique becomes
impractical for very large data instances. For that reason, index structures are
employed by most DBMS.

The structural index approach illustrated by the work of Kaushik et al can
be used to resolve Query 1. Bisimilarity (i.e. the sharing of common subtrees)
allows resolution of path location steps in linear time [BGK03]. A family of
indexes ((j,k)-F+B-index) can be constructed using a range of values for forward
or backward bisimilarity. Excluding the path from the root vertex, the longest
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Fig. 2. (2,0)-F+B-index graph of Figure 1

forward facing path in the query graph has length two (book/title/DATA). There
are no backward directed paths so the (2,0)-F+B-index shown in Figure 2 is the
smallest covering index for the structural part of the example query, i.e. the
query graph in which all value predicates have been replaced by a structural
leaf predicate that select vertices with the special tag label DATA. This family of
indexes does not incorporate atomic data, so no member of this index family is
covering for this query.

Embedding the structural part of Query 1 into the index graph of Figure 2
can be done using the same algorithm that could be used to embed it into the
data graph (since the graphs are bisimilar). The complexity of the embedding
process remains unchanged but the size of the graph has been reduced from 25
vertices in Figure 1 to twelve vertices in Figure 2. Such a reduction in size can be
expected for most semi-structured sources, as most practical data graphs contain
only very few structural building blocks [BGK03]. The structural elements of the
query can be resolved against the index graph but the original data graph needs
to be maintained in order to resolve the value predicate.

The query evaluation process, starting with the atomic value predicate can
be presented in terms a dictionary-based structure such as DDOM [NW02].
Figure 3 shows the fully indexed dictionaries and the structural array of a part
of the example source. Text values are stored in dictionaries and references to
these are preserved in the structure array. Recurring instances of the same text
in a particular XML tag are stored once in each domain dictionary. Using this
approach on Query 1, the existence of title vertices containing the atomic
value ‘Databases’ can be quickly verified. These are the entries at the addresses
8 and 24 in the structural array, corresponding to the vertices &19 and &21 of
Figure 1. The book vertices are represented by entries starting at addresses 11



and 19 in the structural array, the entries for the author vertices start at the
addresses 12 and 20. A linear scan through the structural array is needed to
verify ancestor-descendant relationships between entries. In the example given,
a scan for the first book entry starting at position 11 leads to a title entry
at address 15, but none of the identified atomic value entries is encountered
before the closing tags of the title and book entries are found at positions 17

and 18 respectively. Thus this entry, corresponding to vertex &5 of the data
graph, does not represent a valid result. The similar scan starting at the book

entry at position 19 matches all the required entries from the list of potential
descendants, thus the result is valid.

Storing the complete range using the start and end addresses of the sub-
tree rooted by a node, as shown in Figure 3, allows derivation of the ancestor-
descendant relationship using this information alone. The fact that identifiers
can be used to indirectly encode structural relationships between nodes of a tree
will be used by the hybrid representation presented here. Although this allows
the validation of the structural constraints between individual nodes, it still does
not allow the selection of a set of nodes based on their structural properties as
can be achieved using the index graphs.

The F+B-index and DDOM approaches originate from different perspectives
and lack a common element that could be used for their combination. Index
graphs allow set-at-a-time operation and maintain structural relationships be-
tween vertex-sets whilst abstracting away from the individual vertices of the data
graph. Dictionary coding organises data into homogeneous domains and main-
tains the identity of individual vertices of the data graph but their structural
relationships are not exposed directly.

5 Hypothesis and research questions

The purpose of this experimental work is to compare memory and processor
performance on a prototype of a hybrid data structure with a similar system in-
corporating minimal bit string compression of the data. Several related research
questions are also to be investigated.

5.1 Is it better to use a minimal bit string representation of

semi-structured data rather than the native representation

especially in the context of mobile applications?

With increasing bandwidth and wireless network availability is it still necessary
to compress all but the largest of data sets before transmitting them to a mobile
device? The main inconveniences of large text based data structures include the
need to correctly transmit large amounts of data and providing storage for these
files on the receiving device.

The traditional solution to this problem is to utilise a client/server architec-
ture, keeping the data on a server and allowing the mobile device to form and
transmit queries. The server can then processes the query before transmitting
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the results back to the mobile client. The weakness of this system is that there
need to be a reliable data communication between the client and server whenever
a query or response is required. Several optimisations have been implemented to
this system including both semantic and data caching schemes.

A simple alternative solution is to transfer a copy of the data set onto the
mobile device and then allow the device to the query data locally. This system
however has the disadvantages of needing a reliable high bandwidth connection
in order to transfer the data set and have sufficient memory available on the
mobile device to allocate to storing and querying the data.

In order to reduce the overhead of transmitting large datasets the original
data can be compressed, normally to less than 5–10% of its original size, this
compressed file is then transferred to the mobile device. This system has the
advantage of reducing the time and bandwidth required to transfer the data
set at the processor cost of compressing and decompressing the data, sufficient
storage memory is still required to contain and query the uncompressed data.

A fourth possible solution would be to encode a compressed representation
of the dataset that can then be transferred and kept in a compressed format
that can be queried directly. This reduces both the initial transfer overhead as
well as the memory required to store and query the dataset.



5.2 Does a representation of semi-structured data that combines

structural indexing and minimal bit strings outperform a

similar non-optimised representation in terms of memory usage

and processing overheads?

Dictionary coding allows for efficient compression of text giving a minimal bit
string representation for common sub strings, there is however an overhead when
decoding the compressed representation. The potential benefit of this approach is
that the memory footprint of the minimal bit string system will be considerably
smaller than the non-minimal system while the processor utilisation may well
be increased as a trade-off.

An existing system has been developed that allows for the structural indexing
of semi-structured documents via the F+B-index scheme. The objective of the
current research is to implement dictionary coding into this system and therefore
determine whether the memory requirements and processor usage involved in a
minimal bit representation perform favourably with existing solutions as well as
the non-minimal system.

5.3 What are the battery usage trade-offs when using a combined

structural indexing and minimal bit strings representation of

semi-structured data compared to existing representations?

In mobile systems not only is there a restriction on processor power and memory,
both main and secondary, but also on the battery power consumption cost of
processing. The aim of this research is to expand the previous evaluation of pro-
cessor and memory usage to address the costs and benefits of minimal bit string
representation of semi-structured data in the context of power consumption in
a mobile device and therefore the expected life of the battery .

5.4 What benefits do 64bit architectures bring to minimal bit string

compression and therefore to representations of semi-structured

data which combine structural indexing with minimal bit

strings?

One of the most anticipated recent developments in computing is the cost-
effective introduction of 64bit architectures onto various computing platforms.
64bit architectures are already becoming common place in large scale server sys-
tems and stand-alone desktop systems, future mobile systems may well also be
based on 64bit architectures. While these processors will inevitably be different
to the existing 64bit processors, similar costs and benefits can be expected in
terms of minimal bit string compression. The purpose of this research is to iden-
tify the possible cost and benefit trade-offs of using minimal bit representations
on 64bit architectures in terms of memory usage and processor overheads.



6 Research strategy and milestones

Whilst the F+B-index approach provides a fast and compact representation
for resolving queries on semi-structured data, supporting the structural part of
query resolution, validation ultimately requires access to the native data repre-
sentation. The DDOM approach replaces the native representation with a more
compact structure that exploits the redundancy often occurring in large data
structures. The research we are undertaking aims to combine the F+B-index
and DDOM approaches to produce an efficient representation of the data graph
that will allow querying of and access to a compressed representation of the data
set.

This hybrid data structure is based on combining the F+B-index graph with
the DDOM indexed dictionaries. The vertex identifiers used in both the index
graph and the dictionaries are then replaced with the entries based on the num-
bering schemes creating a unique address space for validation purposes, this
structure is referred to as an NSGraph(Numbering Scheme Graph). Figure 4 il-
lustrates this scheme using the (1,1)-F+B-index graph of the original data graph
shown in Figure 1. In this illustration the incorporated atomic value dictionaries
are suppressed in order to simplify the diagram.

The purpose of this system is to allow the determination of the memory
requirements and processor usage involved in a system utilising minimal bit
representation and therefore determine how such a system performs in relation to
both the traditional solutions and an existing non-minimal prototype previously
developed. An existing prototype system developed in Java gives a base for
this comparison. This system has already given some promising results in terms
of memory utilisation and visit cardinality when compared to the data graph.
Figure 5 shows the memory utilisation of a number of XML benchmark files by
both the data graph and the NSGraph data structure, it can be seen that there
is around a 50% reduction when using the NSGraph representation. Figure 6
gives the visit cardinalities for a number of classes of queries when run over the
NSGraph and Data graph representations, shown in Figure 7, these results show
an encouraging reduction in the number of visits required to resolve the sample
queries, some even showing orders of magnitude reductions.

We anticipate that the final developed system will at least match the results
shown in the prototype as well as adding improvements in the compression of the
data and management of system memory. Future improvements may be based
on the results of the related research issues including efficient dictionary coding
in 64bit architecture environments.

7 Conclusion

We are currently developing a system that combines the benefits of an F+B-index
with the additional benefits of dictionary coding. The intention is to produce a
data structure that can utilise the fast response characteristics of structural
indexing whilst removing the need to refer to the original uncompressed data
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structure. In the context of mobile systems this optimises use of data caching
whilst at the same time minimising the data representation and consequently
saving on memory, battery and processor utilisation.

The purpose of the prototype system was to explore the effect of variations
in bisimulation on the processing of queries as well as to measure the effect that
compressing and indexing semi-structured data has on the size of its in-memory
representation. The objective of the current research is to build on the promising
results gathered in initial experiments and to determine whether the memory,
battery and processor usage involved in a combined structurally indexed-minimal
bit representation will perform favourably with both traditional solutions and
similar structurally indexed non-minimal systems.
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