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Abstract

We report on the progress and outcome of a recent ESA-
funded project (MMOPS) designed to explore the feasibility
of on-board reasoning about payload timelines. The project
sought to examine the role of on-board timeline reasoning and
the operational context into which it would fit. We framed
a specification for an on-board service that fits with exist-
ing practices and represents a plausible advance within sen-
sible constraints on the progress of operations planning. We
have implemented a prototype to demonstrate the feasibility
of such a system and have used it to show how science gath-
ering operations might be improved by its deployment.

Introduction

Communication to distant landers is restricted, both by
availability of a communication window and by the time it
takes for a signal to pass from transmitter to receiver. This
makes it essential to construct plans for the activities of a
distant spacecraft, often spanning several hours or days of
otherwise unsupervised activity. As has frequently been ob-
served, plans rarely survive contact with reality unscathed.
Plans must be constructed using predictions about the out-
come of activities of the spacecraft and also predictions of
the behaviours and reactions of the surrounding environ-
ment. These predictions can diverge from the actual be-
haviours when a plan is executed. In typical currently de-
ployed systems, plan failure will (depending on the severity
of the failure) lead to the spacecraft entering a safe mode and
awaiting further instructions, having aborted execution of
the remainder of the plan. This response shares an important
characteristic with the models on which the plans are based
from the outset: they are conservative. That is, both the pre-
dictions about the activities of a spacecraft and the response
to failures in those predictions act to limit and constrain the
science gathering operations of the spacecraft. To illustrate
this conservatism, consider that it is now estimated that So-
journer spent at least 50% of its time idle, awaiting further
instructions, either because it had completed its planned ac-
tivities and had nothing left to execute, or because it had
entered safe mode following a failure in some activity. Even
the immensely successful Mars Exploratory Rovers (MER)
mission has been extremely cautious: the original planned
mission lifetime for the rovers was only 90 sols, yet they
have now been active for more than 850 sols. Even so, they

have travelled no more than 7 kilometers in the nearly three
years of mission activity. Despite great improvements in the
support technology for the planning of MER operations (Ai-
Change et al. 2003), plans remain conservative and plan ex-
ecution failures have caused many days of lost science gath-
ering over the lifetime of the mission.

In this paper we describe the Mars Mission On-board
Planning and Scheduling (MMOPS) project, in which we
explored the construction of a prototype system that would
help to address the loss of science caused by conservative
mission planning and plan failure. Our prototype has been
constructed to work with the Beagle 2 (Blake et al. 2004)
hardware (see Figure 1), since the on-board software (OBS)
and simulator were already available to the team. As part of
the project, we have also considered the use of our approach
for a mobile lander, such as the planned ExoMars rover.

Our approach has been to design a system that could be
deployed on-board a remote spacecraft, granting the craft
some measure of autonomy. Other space missions have also
explored this possibility, with some success (Chien et al.
2004; Jönsson et al. 2000). In our work we have not at-
tempted to construct a system in which planning is devolved
to the on-board system. Instead, it remains under the control
and supervision of the ground operations personnel. The
on-board system is designed to manipulate plans (timelines)
constructed on the ground, handling three problems that we
consider to be central to execution issues on spacecraft:

• Plan failure isolation. When a plan contains an activity
that fails, or that it is predicted will fail, the first concern
is to isolate the consequences of that failure and to protect
execution of the remainder of the plan.

• Over-subscription. When a plan contains more activities
than it is predicted that there are resources available to
support, activities must be removed from the timeline in
order to bring it back within safe bounds. This situation
includes both consumable resources such as power and
fixed resources such as instruments.

• Under-subscription. Either as a consequence of failure
isolation, or conservative estimates for plan execution, if
it is predicted that more resource will be available than
was expected before plan execution began, this resource
can be absorbed to perform additional activities. We call
these additional activities opportunities and they are de-



Figure 1: Beagle 2

scribed in more detail below.

The system we have developed performs Timeline Val-
idation, Control and Repair (TVCR). These three services
provide the foundation of the management of the problems
identified above. The design of the system allows these ser-
vices to be invoked incrementally, so that additional func-
tionality is called on as ground personnel gain confidence in
the behaviour of TVCR.

Background

On December 25th, 2003, a small lander, travelling with the
Mars Express orbiter, was expected to land on Mars sur-
face. Unfortunately, mirroring the fate of many other at-
tempts to land probes on Mars, Beagle 2 was unsuccessful.
Various explanations of its failure have been proposed, in-
cluding the possibility that the density of the Martian atmo-
sphere is not as high as had been thought and, as a result,
the parachute-brake failed to slow the lander sufficiently be-
fore impact. Considerable expertise was built up around the
Beagle 2 systems, including a partial domain model for hu-
man planning operations, and this formed the core of an ini-
tial project to exploit planning technology to support mixed-
initiative and partially automated planning for the lander op-
erations (Woods et al. 2003) and, from that, the project de-
scribed in this paper. Beagle 2 was a static lander, equipped
with a jointed arm carrying an array of scientific instruments
in a “paw” at its end. Included in the paw was a mole capa-
ble of drilling into soil around the lander to a distance of
more than 2 meters, to retrieve soil samples for gas analysis
on board the lander. Beagle 2 was, essentially, a geological
survey system, capable of performing an array of geological
and environmental measurements in its immediate surround-
ings.

All lander operations are constrained by power availabil-
ity, provided by solar energy with a battery for storage, and
by temperatures. Planning lander operations involves man-
aging constraints on continuously changing quantities (the
generated power levels and temperatures), scheduling the
use of resources, planning the movement sequences of the
arm and use of the instruments. Human operations plan-
ners were to have carried out the planning for Beagle 2

in a complex process involving scientists, providing mis-
sion goals and the operations to achieve them, and lander
operations personnel, concerned with lander security and,
therefore, the power resources and internal lander monitor-
ing systems. When we became involved in the project we
discovered that the existing partial domain description was
in a form that closely resembled PDDL2.1 durative action
descriptions (Fox & Long 2003). It was possible to translate
the description into PDDL automatically using a simple au-
tomatic translator. The domain encoding began with over 50
actions and this has increased to nearly 70 actions following
further domain analysis.
Power is the most important continuous factor in the op-

erations of the lander. The lander operates close to margins
and the model of the solar generation and the battery charg-
ing profiles are vital in determining when operations can be
planned. The management of battery and solar power is suf-
ficiently close to the margins of operational envelopes that
plans must interact with the continuous changes involved in
the physical system rather than with abstractions into coarse-
grained simple step-function changes. Of course, with suf-
ficiently small time-steps a step-function model can approx-
imate the continuous change adequately, but it is infeasible
to attempt to model this level of granularity explicitly in the
planning domain description. Therefore, this problem de-
mands that the planner (human or otherwise) has access to
a sufficiently detailed model of the continuous changes that
affect the power systems.

Ground-based Planning, On-board Repair
Our preliminary investigations (Woods et al. 2003) con-
vinced us that, while on-board planning technology has an
important role to play, there are important reasons why, in
the short-term, fully automated plan construction is not the
most important objective. The first reason is that on-board
resources are extremely constrained, so both CPU and mem-
ory availability is likely to prevent realistic planning technol-
ogy from being deployed on deep space probes in the near
future (notwithstanding the important success in the Remote
Agent Experiment (Jönsson et al. 2000)). The second rea-
son is that neither scientists not operations personnel (those
currently responsible for planning of spacecraft operations)
are willing to relinquish their tight control over operations
until significantly more experience and trust in automated
technologies has been built up. Therefore, our goal has been
to provide an on-board “planning assistant”, providing sup-
port to the operations personnel responsible for constructing
plans on the ground. The role of the assistant is to adjust
and repair plans on-board when circumstances make it im-
possible execute the plans constructed on the ground. An
essential constraint on this behaviour is that the plans that
are manipulated on-board are all built on the ground by op-
erations personnel.

Domain Models and Plan Fragments

In order to perform any on-board manipulation of plans it
is necessary to provide a foundation for reasoning about the
structure of those plans. Our starting point is the action-
centred models of AI planning, describing the actions that



form the building blocks of plans in terms of their precon-
ditions and effects. Preconditions and effects are evaluated
with respect to a model of the state of a system and its envi-
ronment. The state is represented by a collection of propo-
sitions asserting both logical status and also numeric values
of metric properties. In our work we have used PDDL (Fox
& Long 2003) as our modelling language, since it offers us
access to a range of research tools already constructed for
the construction and analysis of plans and domains.

Although PDDL offers an expressive language for mod-
elling the behaviour of individual actions and their interac-
tions with other actions, it does not currently offer a way to
express several other important constraints on the structure
of plans. For example, Beagle 2 was equipped with a rock
grinder and various imaging tools: it is standard scientific
methodology to perform experiments so that the least inva-
sive investigations are performed first, following them with
those that might change the target of investigation physi-
cally or, finally, chemically. Thus, the grinder would not
be deployed until after images of a target had been captured.
This constraint is not a logical constraint on the performance
of these actions — clearly, it is perfectly possible to grind
a rock before taking any images of it. Instead, this is a
methodological constraint on the actions in a plan. Although
there are techniques that would allow such constraints to be
modelled in PDDL, the fact that these constraints govern not
the way in which actions can be performed but the circum-
stances under which it would be appropriate to perform them
is very significant. In particular, methodological constraints
may be relaxed under exceptional circumstances, while log-
ical constraints cannot be.

AI planning research has been primarily focussed on the
construction of plans for goals that specify the conditions
that should be achieved in the final state. In the context of
space probe plans we found that this was not always the
most convenient way to express the purpose of plans. Of-
ten, a plan is intended to perform a series of experiments
and the simplest way to express their goals is to say which
actions they are designed to perform rather than to express
the goals in terms of the states that these actions achieve.
One reason for this is that the effects of a science gathering
activity seen from the perspective of the on-board state are
typically to add data to some internal data buffer. The on-
board state is not really any different if the data is acquired
from a spectrometer or from a camera, but to support the
expression of goals in terms of state conditions would re-
quire that a distinction be made between the various sources
of data, including not only the instrument but also the tar-
get. This complicates the model and is counter intuitive for
operations personnel when describing plans.

To address these problems we introduced a separate way
to capture information about the structure of a plan and its
purpose. Our objective was to provide a tool that would
allow operations personnel to record information about the
structure of a plan — information that was already known
to them but has previously not been formally captured or
recorded. Essentially, we wanted to capture the information
that might be exchanged informally between (human) plan-
ners during the initial construction of a plan. This informa-

tion includes:

• Plan structure. In order to identify the organisation of
a plan into coherent blocks of activity we allowed plans
to be divided into plan fragments. A plan fragment is a
group of actions that are together in a plan to coordinate
and achieve a single objective. The group forms a co-
herent unit of related activities, such as preparing equip-
ment, deploying it and gathering data from it before stow-
ing it again. The point in identifying these structures is
that these actions are in a plan because of their mutual in-
tegrity. If, for example, an instrument is known to be non-
operational then there is no benefit in deploying it and
stowing it, even if those actions are logically independent
of the status of the instrument.

• Ordering constraints. When it is important that one ac-
tivity should precede or succeed another, but this condi-
tion is not a logical constraint on the interactions of these
activities then we record it as a plan constraint. Such
constraints might hold between individual activities or be-
tween entire fragments. We distinguish between ordering
dependencies, where the two constrained elements should
either both appear in a valid execution of a plan, or else
neither appear, and conditional orderings, where the two
constrained elements must appear in a particular order if
they are both executed.

• Timing constraints. Activities or fragments can be iden-
tified as requiring to be executed during darkness or dur-
ing daylight. They can also be marked as fixed, meaning
that the time at which they are to be executed cannot be
changed. This is typical for communication activities that
must synchronise with communication windows shared
by orbiters or ground-based transmitters.

• Mutual exclusion constraints. These constraints prevent
two activities, or fragments, from coexisting in the same
timeline. This constraint can be useful in triggering the
use of diagnostic activities where they are inappropriate
when the corresponding instrument is functioning, but
they should be included in the plan exactly when the activ-
ities using the instrument have failed (and therefore have
not been executed in the current timeline).

Figure 2 shows the interface to our prototype tool, CON-
TOOL, developed for this project. It presents a simple view
of the timeline and allows selection of elements to be split
into fragments. The entry of constraints is managed in the
smaller window showing the small coloured and number-
coded blocks representing activities and fragments. An im-
portant aspect of the use of CONTOOL is the identification
of plan fragments. The fragments that form the main time-
line are the building blocks that form the primary scientific
experiments for that period. However, additional fragments
can be created and included in the data sent to the lander,
identifying optional additional experiments that might be
performed. These are called opportunities (an example is
shown in the upper right window of the screenshot). Each
opportunity is a self-contained scientific experiment, form-
ing a coherent planned structure of activities that could be
executed by the lander. The identification of opportunities



Figure 2: The plan fragment and constraint editing tool.

allows ground staff to propose useful additional activities
that scientists would like to see executed but which have
not been selected for the primary timeline for that period.
These opportunities are used to reduce the problem of under-
subscription: when the lander completes the primary time-
line with a significant margin of unused resource — a situ-
ation that can often occur because of conservative assump-
tions made during planning — the excess can be deployed
to achieve bonus experiments in the form of opportunities.
Similarly, if failure of parts of the primary timeline leaves
the lander with freed resource, opportunities can be used to
achieve some scientific return from the resource that would
otherwise be wasted.

System Architecture

Our system architecture is illustrated in figure 3. The lower
part of this diagram shows the ground-based operations
planning tools. These include standard timeline planning
tools used in earlier ESA missions. The interface between
these tools and the lander is achieved via the generated
telecommands. The lander is represented using the original
Beagle 2 on-board software (OBS), running in an ERC32
emulator on a Sun Solaris machine. Hardware elements of
the lander are simulated in software. The Beagle 2 OBS
was modified to allow communication with the additional
module, TVCR. This module was constructed using several
existing software components and was not, therefore, built
with a view to on-board deployment. As a consequence,
the most efficient connection with the OBS was determined
to be through a page of external memory which could be
written-to and read-from by the emulated ERC32. TVCR
ran as an external library on the Solaris machine, invoked
whenever the external memory page was written-to by the
OBS.

TVCR: An on-board planning assistant

TVCR is built around our plan validation system,
VAL (Howey, Long, & Fox 2004a; 2004b; Fox, Howey,
& Long 2005), coupled with a plan-execution architecture,
originally developed for robot control (Coddington et al.
2005). The execution architecture is not critical to the be-
haviour of TVCR, but was a convenient framework in which
to work. TVCR receives three types of requests from the
OBS: validate, control and repair. The validate request is
issued when a new timeline has been transmitted to the lan-
der. The OBS issues the request before the timeline begins
execution. The timeline is then validated using the on-board
state and model. The model is a PDDL (McDermott & the
AIPS’98 Planning Competition Committee 1998) descrip-
tion of the domain, using continuous functions that very
closely approximate the solar generation and battery use
curves. We discuss the model below. The control request is
issued periodically by the OBS, during execution of a time-
line, in order to monitor the continuing evolution of the tra-
jectory. In our prototype the control request frequency was
set at 0.1 Hz, but this could be dynamically adjusted to suit
the demands on CPU and memory, as well as the granular-
ity of current activities. In response to this request, TVCR
can revalidate the plan, but this depends on how close to the
next critical transition in the activities of the system TVCR
judges the system to be. In particular, TVCR validates the
timeline following initiation of a new activity and approach-
ing the end of an activity. It will also validate the timeline
in between activities if there is sufficient gap before the next
activity will begin. Essentially, once this gap is small, it is
not possible for TVCR to respond to an anticipated activ-
ity failure before the failure would be triggered anyway on
attempted dispatch to the lander executive.

The final request, repair, is only issued by the OBS af-
ter TVCR has signalled that an earlier request (either vali-
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Figure 3: The system architecture, showing both ground and lander segments.

date or control) has identified a potential failure in the time-
line. In fact, when TVCR identifies such a potential flaw it
does not immediately signal the fact to the OBS (although
it is logged). Instead, the problem is signalled when TVCR
judges that there is a window during which it would be ap-
propriate to respond. One reason for this is that anticipated
failures far into the future might be countered by activities in
the nearer term completing well within the (usually conser-
vative) estimated resource requirements. Reacting too early
to anticipated plan failure can be as damaging as failure to
act. TVCR continues to monitor the timeline execution and
the anticipated failure point, based on the type of failure that
is expected, until the point it considers appropriate to alert
the OBS. Once OBS issues a repair request, TVCR is sanc-
tioned to act to repair the timeline.

TVCR Acting to Repair the Timeline

TVCR is intended to operate within tightly constrained re-
source limits: processor cycles and memory availability are
both severely restricted. For this reason, we have adopted
a strategy that is based on a hierarchy of responses, starting
with a simplest response which is to repair a damaged time-
line by removing the activities from the current timeline that
are affected by the observed failures. This process involves
first removing the fragments in which the affected activities
lie, using the structure identified by the operations personnel
through CONTOOL. The impact of these removals is prop-
agated through the constraints which were also entered by
operations personnel. The resulting structure is revalidated
and, if there remains a violation of resource demands, fur-
ther components are removed, using the priority levels set
on the ground to determine the order in which fragments
are taken out of the timeline. Where there are dependencies

between fragments, each fragment is assigned a temporary
priority based on the highest priority fragment that would
be affected by its removal. The objective, in this first stage,
is to arrive, as quickly as possible, at a baseline core time-
line that is executable and represents a maximal executable
set of fragments from the original timeline. The only avail-
able choices in this process are in situations in which more
than one fragment has been assigned the same priority. In
this case, TVCR uses an estimated resource requirement for
each fragment and eliminates the one that demands greatest
resource. The priority value is assumed to represent an es-
timated scientific utility and, if two fragments are of equal
utility, the one that returns its rewards at lowest resource cost
is considered the better choice. There is no backtracking
across these choices, since the alternative can never improve
the opportunity to find an executable timeline. The process
will always terminate, although it is possible that it might
converge on an empty timeline. In the situation where the
timeline is empty and the validator still assesses the timeline
to be invalid (because resource thresholds are not reached at
critical times), the lander is in a precarious state and the best
chance for survival is to enter a safe mode in a state of alarm.

Once a valid base timeline has been identified, TVCR at-
tempts to enhance the timeline. TVCR always maintains the
current best timeline, so that if the OBS issues a command
for an immediate response, or TVCR itself identifies that
there is no more time to wait before releasing a timeline (in
order to ensure that the next activity is released on time), this
current best will be the one that is used. This creates a vari-
ant “anytime” behaviour, in that the repair process attempts
to use whatever time is afforded to it to improve the existing
version of the timeline until it is either interrupted or reaches
the end of the process.



The enhancements of the timeline are performed by iden-
tifying a subset of possible opportunity fragments that might
be added to the timeline. This set is pruned to include only
those for which dependencies are satisfied (or mutual ex-
clusions violated) and for which there is sufficient avail-
able resource (within the limits of the original primary time-
line). The opportunities are then ranked in priority order.
In general, there are relatively few opportunities to consider,
but there can be choice between alternatives. In particular,
when multiple opportunities are awarded the same priority,
the choice between them must consider alternative resource
demands and the interactions between the alternatives and
other outstanding opportunities. In order to maintain a tight
bound on memory and CPU demands the search is resolved
heuristically, using a greedy selection. This could obviously
be improved if resources were to be less constrained, but
our experience suggests that greedy choice works well. It
is worth recalling that the repair strategy is only applied in
situations where resources would otherwise go unused, so
even a sub-optimal enhancement of the timeline offers ben-
efits over the timeline without intervention.
The hierarchy of extensions to the timeline begins by con-

sidering the addition of opportunity fragments to the time-
line. It should be noted that when a timeline is modified,
either by the removal or by the addition of fragments, then
it is generally the case that some additional linking activities
are required between the ends of the newly adjacent parts
of the timeline. TVCR has a special-purpose planner de-
signed for this job, which only considers a very small subset
of activities (those relevant to this linking behaviour). This
problem is very highly constrained and involves no search,
but the linking activities must be known in order to deter-
mine the costs of execution of new fragments. Following the
simple addition of fragments, the next possibility that is con-
sidered is the rescheduling of activities in order to open up
wider windows of opportunity for execution of longer activ-
ities. This is particularly useful when small overlaps prevent
an opportunity from fitting into a gap between other activ-
ities in the timeline. The rescheduling considers only the
possibility of sliding activities along the timeline and this is
restricted by any constraints stipulated on activities by op-
erations personnel, including activities that are locked (such
as communications activities) or that must occur in certain
lighting conditions.
In principle, the addition of opportunities can open up

new opportunities, through satisfaction of dependencies, so
the set of opportunities can be modified after each enhance-
ment of the timeline. The process of generation of further
enhancements is restricted by the time, CPU and memory
resources available to the repair process, but TVCR will
continue to explore the hierarchy of extended timelines until
notified that there is no further resource, or until no further
improvement can be found. In our test cases there were rela-
tively few opportunities to consider and reasoning resources
were never a limiting factor.

The Domain Model and Timeline Validation

When we began work on the construction of a PDDL do-
main model, we started with a pre-existing model built by

the scientists working on the Beagle 2 project. We found
that this model was so similar in form to PDDL that a simple
script provided us with an initial translation into PDDL. We
concluded that the level of abstraction we require to support
plan validation using our PDDL model is an appropriate and
natural one for operations personnel and that it corresponds
well to the level at which timeline activities are planned in
actual missions. The model is based on a pre- and post-
condition description of activities, most of which are dura-
tive actions. A few actions, such as turning on the torch
attached to the PAW, are not best captured as durative ac-
tions. The model also required an appropriate power model
and temperature model. In these cases we found that the
extensions forming PDDL+ (Fox & Long 2006), compris-
ing the addition of processes and events were an appropriate
basis for modelling the domain behaviours. Torch activi-
ties are modelled as instantaneous actions (turning on and
turning off the torch), with a process consuming power be-
tween the two. The power model is constructed using con-
tinuous processes that capture an approximate, but realis-
tic, model of solar power generation and of battery state of
charge. Our model of temperature is not continuous: we
were supplied with a discretised model of the temperature
of various nodes on the lander structure at hourly intervals.
This is used to construct a series of timed assertions in the
initial state of each planning problem instance. We chose to
adopt the discretised model in this case in order to demon-
strate that our approach can handle both a continuous and
a discretised model. In both cases the model is an approxi-
mation, although with different levels of discrepancies, and
one of the key issues in managing the plan validation is to
ensure that the activity models are conservative with respect
to these approximations.

Validation of a timeline involves projection of the state
through a series of models of activities representing the
timeline. This process involves confirming that the in-
teractions between processes (power generation and con-
sumption) are correctly monitored across intervals of ac-
tivity. Since the functions describing these processes are
non-linear, monitoring them involves checking whether non-
linear functions have roots within certain intervals. We use
a mixture of analytic techniques and numerical techniques
to achieve this. Since we do not expect our systems to run
too close to operational envelopes, the accuracy of numer-
ical techniques is not an issue in these tests. Indeed, the
accuracy of numerical techniques for solving these func-
tions is far greater than the accuracy of the predictive mod-
els themselves. The environment introduces uncertainty in
the form of degradation of solar panels through accumula-
tion of dust, through atmospheric effects and through tem-
perature effects. As a consequence, the prediction of the
state of charge will always be subject to a degree of inac-
curacy during actual execution. The objective is to achieve
a sufficiently accurate model to enable robust prediction of
the outcome of planned activity — if no such model can be
constructed because of excessive uncertainty, then the whole
purpose of planning is called into question.
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Evaluation

Evaluation of TVCR is complicated by the fact that its role is
most important when the execution trajectory has performed
unexpectedly. We were further constrained by the hardware
simulation we were using: this did not simulate the detailed
function of some instruments, making it very difficult to
model failures in those subsystems. In order to understand
the impact of an operational failure during timeline execu-
tion, consider the schematics in figures 4, 5 and 6. Figure 4
shows the typical progression of operations, in which time-
lines are planned during the day (sol) preceding their ex-
pected execution (assuming an operational cycle of roughly
one sol). At the end of each day the data generated by that
day’s operations is downlinked for analysis and a new time-
line is uplinked for execution in the following day. If there
is an operational failure in this cycle (shown figure 5 imme-
diately following activity 21) the ground staff will not be-
come aware of it until the end of that day’s activities. The
planned timeline for the next day will be downlinked be-
fore the ground staff become aware of the problem in the
current day’s activities. In the worst case, this timeline will
no longer be executable, probably because the lander will
have entered safe mode in response to the failure. Assum-
ing that the ground staff now wish to execute diagnostics,
they will have a first opportunity to perform new activities
by the second day following the failure. It is likely that
other activities might be included at this time, depending
on the severity of the failure. Instrument repairs will then
take place on the third day following the failure and normal

activity will be resumed only on the fourth day after the fail-
ure. With TVCR (figure 6) the failure will (assuming the
failure is not too severe) lead to the insertion of opportuni-
ties into the timeline on the first day. These can include a
diagnostic activity which would be constrained to be added
to the plan only if the instrument operation had not been per-
formed (that is, the diagnostics would be mutually exclusive
with a successful operation of the instrument for which they
were relevant). The planned timeline for the following day
would almost certainly not execute directly following the
disrupted cycle of operations, but parts of it might execute
successfully and TVCR could insert additional opportunities
to absorb the otherwise undersubscribed resources available
on that day. Meanwhile, the ground staff, armed with the
diagnostics, would be in a position to plan instrument re-
pairs and continuation of the remaining science mission, so
that by the second day following failure a full sequence of
activities could be completed. Normal operations would re-
sume fully on the third day, but the intervening period would
have included a fully populated timeline, so that the mission
would have continued to gather scientific data and complete
diagnosis and repair of instrument failures.

Of course, this schematic view is both simplified and, to
some extent, optimistic. In practice, it is quite plausible that
TVCR could not completely populate the timeline. In the
case of severe system failures, TVCR would be unlikely to
be able to anything. However, mission logs demonstrate
that minor failures occur regularly and with frustrating fre-
quency, leading to periods of significant science blackout as



missions personnel put the lander back into an operational
state and resynchronise their view of its status with reality.
It is in these cases where TVCR can help to recover what
would otherwise be lost time and resources.
To explore the performance we generated a collection

of scenarios, based around a common timeline, featuring
two rock geology experiments. The primary timeline con-
tained two Mössbauer spectrometer experiments, supported
by imaging and rock grinding activities (see figure 7). We
then considered a variety of possible failures. These in-
cluded:

• A scenario in which the Mössbauer was assumed to have
failed prior to the timeline being uplinked. This might
happen if the instrument had failed in an activity in the
timeline immediately preceding this one, so that the fail-
ure would be unknown to the ground staff at the time of
construction of the new timeline.

• A scenario in which the Mössbauer failed during the first
activity in which it was used.

• A scenario in which there was insufficient battery charge
at the start of the plan to allow it to complete execution.

In each case, TVCR performed as expected and repaired
the timeline. Where a suitable opportunity was available,
TVCR inserted it into the timeline, together with the neces-
sary linking activities to create a complete, coherent time-
line, which was then successfully simulated to conclusion.
As can be seen in figure 8, the timeline executed when
TVCR performed repair was significantly enhanced com-
pared with the one executed without TVCR. In the upper
case almost all of the timeline is abandoned without TVCR
support. In both cases the timeline is repaired by removal
of the damaged activity or activities and an opportunity is
inserted into the timeline in the place of the first. This is an
environmental sensing activity and relies on the PAW being
placed into an appropriate attitude. This is achieved by the
addition of some simple “glue” activities that reposition the
PAW prior to execution of the fragment and then rejoin the
execution of the original timeline at its conclusion.
A further dimension for evaluation is that of performance.

In our tests, the validation of a timeline of approximately
two sols of activity could be performed in less than 3 sec-
onds using an estimated ERC32 processor speed, with repair
in less than 6 seconds. Our prototype was not optimised for
either memory or processor performance, but we consider
this figure to be representative of the performance we can
expect from TVCR.

Conclusion

We have successfully constructed a prototype system that
acts as an on-board plan validation and repair system. We
have used the prototype to demonstrate that on-board rea-
soning about plans is a practical objective which is less am-
bitious than full-scale planning, but that can grant huge ben-
efits in terms of science return. Several features contribute
to this. Firstly, an on-board system is best placed to monitor
execution of a plan and react to failures in a timely and effec-
tive way. Secondly, the very fact that plans can be brittle in

execution means that operations staff tend to be conservative
in their construction of plans, leading to under-subscription
of lander resources. The combination of these factors can
lead to significant periods of downtime during deep space
missions. An on-board planning assistant could exploit the
slack during execution of a plan and adapt to plan failures in
order to improve the scientific return.
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Figure 7: Base timeline showing instruments it commands.

Figure 8: Timeline execution paths. The top screen shot shows the original timeline (top third) and the timeline actually
executed with (middle) and without (bottom) TVCR, for the case in which the timeline is recognised at the outset as damaged.
Actions shown in the pale colour below the executed timeline are activities that were removed from the timeline during the
repair, while dark activities slightly offset above the timeline are new activities added into the timeline by TVCR. The lower
screenshot shows the timeline repaired when the Mössbauer fails after its first operation in the timeline.




