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Abstract. In this paper we consider the role of the International Planning Com-

petition series in the evaluation of planners, both directly through the events them-

selves, and indirectly through the creation of resources and infrastructure. We also

consider the problem of evaluation based on data collected both in the competi-

tions and otherwise and examine some of the issues that arise in attempting to

formulate and test hypotheses around the data.

1 Introduction

In 1998, Drew McDermott organised the first of what has become a biennial series of

international planning competitions (IPC) [1–5]. Five planners competed in the first

competition and many more have competed in each of the succeeding events. The com-

petitions have stimulated a dramatic rise in performance of planners, with the achieve-

ments of planning systems having improved not only in terms of the speed to find

plans, but also in terms of the range and complexity of the domain models they are able

to manage. In particular, the 3rd IPC saw the development of temporal planning mod-

els [6], in the 4th IPC domain models were enhanced with derived predicates and the

5th (and most recent) IPC has seen the addition of soft constraints and trajectory con-

straints to the models of planning problems [7]. As a driver of research in planning, the

IPC series has had impact beyond the immediate IPC events themselves, having encour-

aged the widespread use of a standard planning domain description language (PDDL),

the creation of a large number of new benchmark domains and problem suites and a

wide expectation that empirical evaluations of planning systems should now compare

planners with the current collection of state-of-the-art systems as identified in the IPC

series.

Competition series are increasingly common tools for stimulating research develop-

ment and interest in a range of fields, including robotics (RoboCup and the Darpa Au-

tonomous Vehicle Challenge), theorem proving, SAT solving and natural language pro-

cessing. Competitions are extremely successful at focussing interest on specific prob-

lems and stimulating excitement in a field. A great benefit is that it is possible for a

new approach to be applied by a completely unknown researcher in a field and, if it

is successful, for it to rapidly become widely known and assimilated. They also have

disadvantages: they can lead to loss of diversity as researchers seek to squeeze a lit-

tle more performance out of whatever system won the preceding competition, they can

cause research to focus on an artificial measure of performance which distracts from

the real problems that the community might face and they can lead to stagnation. There



are ways to mitigate these problems. In the planning community we have, so far, man-

aged to achieve a rapid pace of development in the challenges set in the competition

series, with a consistent pressure towards modelling realistic planning problems. There

has also been a steady series of innovations in the field, although some techniques have

become widely adopted standard approaches as a consequence of significant success in

the competitions.

One of the challenges faced by the competition organisers is to define the basis on

which winners are determined in each successive event. The changing challenges of

the IPC series mean that evaluation has also evolved over the series. There is also an

important difference between the choice of a winner in a competition and the more care-

ful scientific evaluation of the comparative performance of different planning systems.

In this short paper we briefly consider the problems and challenges that arise in using

competition data as the basic of empirical evaluation of planners and we also discuss

techniques which we believe to be useful in the comparative evaluation of such systems,

based on our experiences of organising the 3rd IPC and performing the most extensive

evaluation of the results that has so far followed any of the IPC series [3].

2 Evaluating Planning Systems

There are three dimensions that are most important in measuring the comparative per-

formance of planning systems: the speed with which plans are produced, the coverage

of the problems presented and the quality of the plans constructed in each problem that

is solved. A planning problem is considered solved if a feasible plan is found. Optimal-

ity is not required (it is generally too hard to solve planning instances to optimality), but,

nevertheless, the quality of plans is a relevant metric. By coverage we mean the propor-

tion of problems solved and the balance of this proportion across different domains. For

example, it is better to solve some problems from all domains than all problems from

one domain but none from any of the others.

In the first competition, McDermott attempted to define, beforehand, a complex

formula to attempt to balance these various factors and arrive at a winner. The formula

was abandoned before the first round was complete and since then the evaluation, for

the competition purposes, has been a rather more subjective one based on an intuitive

balance between these factors.

The relative emphasis of the factors has changed a lot over the series. In the first two

competitions, speed and coverage were primary, with quality being measured solely in

terms of the number of steps in the plans and largely being placed behind the other fac-

tors. In the 3rd IPC a new extension of the competition language allowed problems to

contain an explicit description of the metric that would be used to judge the quality of a

plan, with the metric varying from problem to problem. This led to a far greater empha-

sis on plan quality and the three factors became more closely balanced. The 5th IPC has

seen the emphasis on plan quality increase still further, with speed of planning drop-

ping into a far less significant role. The argument has been that if a planner produces a

plan in its time-limit (30 minutes in the 5th IPC) then the precise timing is not critical:

programming tweaks, choice of data structures and programming language, compiler

and so on can all have an impact on speed to the extent that when performance is mea-



sured in seconds the difference in speed is not a very reliable measure of the behaviour.

Coverage is more important because it gives some insight into scaling behaviour and

the power of a planner to handle a wide variety of language features and interactions

between them.

The introduction of soft constraints made plan quality an even more important is-

sue in plan production and a wide range of very important questions have been raised

through the use of plan metrics and soft constraints in the evaluation of plans. For

example, the use of soft constraints, or preferences, allows the specification of over-

subscription problems, where not all of the specified goals can be achieved and the

planner must determine which subset will achieve greatest reward at lowest cost.

Having identified the dimensions on which planners are evaluated, it is also helpful

to observe that it has become standard practice in the planning literature to evaluate

ideas by considering comparative performance. That is, a new technique is typically

evaluated by empirical comparison of a planner sporting the technique with one that is

not. In some cases, the base planner is the same for both data sets, with only the new

enhancement differentiating the behaviours, while in other cases the new technique

cannot be separated from the planner that uses it and then the comparison is between

the new planner and some existing planning system, usually one recognised through the

competition as a good performer.

It is worth emphasising, for the benefit of the reader who is unfamiliar with AI plan-

ning research, that the objective in much of the field is to construct a general planning

system, capable of taking as input a declarative description of a domain and a problem

instance for that domain (specifying the identity and initial configuration of objects in

the domain and properties required as a goal) and producing a plan (an agenda of actions

from the domain that will transform the initial state into one that satisfies the goal). The

domain descriptions are problem-centred, rather than solution-centred, in the sense that

they describe only what actions it is possible to perform and not the circumstances un-

der which it might be desirable or sensible to perform them. Planning systems that rely

on advice about when to apply particular actions are often called knowledge-intensive

planners and have also been explored in the competition series, although less frequently.

We now turn to the critical question, which is how can comparison be drawn be-

tween two planning systems? The usual approach is to take a large sample of problems,

from a wide range of benchmark domains, and run both planners on each problem. At

this point, the hope is that one planner will show a sufficiently consistent improvement

in all the useful dimensions that there is no need to do anything more than present the

numbers in graphs and leave it to the reader to infer which system is better. In practice,

there are many cases where things are not as convenient as this and the comparison

in performance gives mixed messages, with sometimes one planner performing better

and sometimes the other, sometimes with conflicting evidence when considering the

different dimensions of performance. The consequence is often that claims about the

performance of a new system must be qualified.

Several problems arise in drawing these comparisons. Firstly, although the bench-

mark problem set has increased since the IPC series began, nevertheless, empirical eval-

uations are restricted to a relatively limited set of domains. Some work has been carried

out to analyse some of the properties of these benchmarks to determine important char-



acteristics of them. For example, whether they are intrinsically hard problems [8] or

yield good approximate solutions [9], whether they have natural structure that supports

certain planning techniques [10] and whether they show particular kinds of symme-

try [11, 12].

In general, it is clear that good performance on the current set of benchmark do-

mains is not a guarantee of good performance on new problems and planners can behave

very differently when faced with a new domain. Secondly, the benchmark domains are

associated with problem sets (typically anywhere between 20 and 50 problem instances

are available for each domain) and these are designed to represent some sort of increas-

ing challenge to planners. Unfortunately, it quickly becomes apparent that planners do

not all agree on the relative hardness of individual problem instances and the intuitive

notion of scaled problem difficulty does not always accord with the pattern of behaviour

in the performance of planners. This problem is most acute in considering the behaviour

across different planning domains: agreement within domains is stronger. Finally, the

(necessary) use of a cut off time in evaluating the performance of a planner leads to an

inevitable censoring effect in the data, where it is not always clear whether a planner

might have returned a result if it had been given just a few seconds more to deliver it.

In practice, the empirical evaluation of planners rests on several assumptions: that

the benchmark domains are somehow representative of a wider range of interesting

problems, that the instances presented to the planners are representative of a wide range

of problems in each domain, that the scaling behaviour can be usefully induced from a

small set of problem instances and that the trends in relative behaviour of two planners

can be induced from the sample on which they are based. Of course, several of these

problems are typical of all empirical science and boil down to the robustness of the

sampling strategy and the strength of the claims for generality made from the empiri-

cal evidence. The hypotheses that are typically of interest are assertions of consistent

performance differences between planners in terms of one or more of the dimensions in

which they are assessed. It is common to generalise from the samples to make claims

about planner performance across “all planning problems”, if only implicitly.

2.1 Competitions and Scientific Evaluation

Our experiences in organising the 3rd IPC convinced us that it is very difficult to com-

bine the generation of data in a competition context with the scientific evaluation of

systems. A key difficulty is that the scientific method of constructing hypotheses and

then carefully empirically testing them relies on freedom to respond to earlier results

in order to construct new hypotheses and to have freedom to generate data from a wide

sample space. In a competition, the key is to make an event that is informative and en-

tertaining for the observers and that is practical in terms of time and technical demands

for the competitors. The result of a competition is not peer-reviewed, but an entertaining

judgement and the process depends on speedy assimilation of the data rather than slow

and careful analysis.

After the 3rd IPC, we took the data that had been generated and performed several

careful analyses, but we found that some of the questions we would have liked to an-

swer could not be tackled with the data we had collected. Nevertheless, the competition



generated more than 4000 data points (including about 4000 plans) between 13 differ-

ent planners, across eight domains. Each plan included both a time value to produce it

and a quality measure of the resulting plan. With this much data it is clear that there is

scope to make some assessments about the relative behaviours of the various planners.

3 Empirical Methods and the 3rd IPC

We will now briefly review some of the techniques we applied in evaluating the results

of the 3rd IPC and comment on the issues they raised. We believe that some of the

techniques we applied in evaluating the data are very general and would be of interest

and use in other efforts at empirical evaluation of AI systems.

3.1 Experimental Setup

The collection of the data was organised as follows: a single machine was used by all

competitors. Competitors logged on to the machine remotely to run their planners on the

problem sets. Domains were released with a limited time available to review them and

test planners on sample problem instances (to check for any parsing bugs or other minor

problems) before the main problem sets for the domain instance were released. Each

domain had 20 associated problem instances of increasing size (measured in terms of

the numbers of constants and related goals in each instance). The planners were allowed

a maximum of 30 minutes on each problem instance. It was necessary to impose a limit

because we wanted to collect a great deal of data in a short time.

3.2 Statistical Evaluation

Our approach was to construct a series of hypotheses and then to test them using famil-

iar statistical techniques. For example, we formulated the null hypothesis that the data

offered no basis on which to partially order the planners in terms of their performance,

either in time or in quality. We used Wilcoxon rank sum matched pairs tests pairwise

between planners, using a sufficiently small p value (we were more conservative than

the Bonferroni correction and used p=0.001) to allow us to combine the results into a

single tableau (partial order) between all the planners at a combined p value of 0.05.

An important advantage of the Wilcoxon test is that it is non-parametric, since it

uses ranks rather than absolute data values. This matters a great deal, since the data

points were collected for problems of (deliberately) increasing difficulty and the differ-

ences in performance between planners are affected by the sizes of the problems they

are solving. In particular, on small problems the difference in performance is typically

much smaller than on larger problems, as might be expected. Unfortunately, there is

no way to normalise the differences according to problem difficulty because there is no

reliable measure of problem difficulty— indeed, the question of how problem difficulty

might be measured in order to correlate it with performance was one of the issues we

considered in examining the results.

Since the performance differences are dependent on the problem difficulty as well

as the planners, and the problem difficulties were not carefully controlled, the perfor-

mance differences could not be expected to follow any particular distribution, forcing



us to look at non-parametric tests. The Wilcoxon test allowed us to check whether there

was a consistent performance difference between pairs of planners, without considering

its magnitude. A less powerful test, but one that is also non-parametric, is a simple pro-

portion test in which we considered the proportion of problems in which one planner

performed better than another.

Details of the outcome of our tests can be found in [3] — for the purposes of this

paper, the important observation is that the the Wilcoxon rank sum matched pairs test

was a valuable tool in examining the relative performance of systems on a data set

with unknown distribution. Furthermore, this test is reasonably robust to the problem

of cut off in the evaluation of relative timing performance because the ranks for these

differences can be set to place them last in the series. The Wilcoxon test has been

adopted by other authors in the planning field, influenced by our work, as a suitable test

for performing pairwise performance comparisons between planners. We believe this to

be a useful tool that might find wider application.

In order to check whether planners agreed on the relative difficulty of planning

problems we used a “rank correlation in multiple judgments” test. We used the planners

themselves as judges to determine how difficult individual problems were. In each test

the n planners rank the k problem instances in order of time taken to solve. Unsolved

problems create no difficulties as they are pushed to the top end of the ranking. The rank

correlation tests for multiple judgements determines whether the independent rankings

made by the n planners agree. The test statistic follows the F-distribution with (k −

1, k(n− 1)) degrees of freedom determining whether the critical value is exceeded. We

formulated an explicit null and alternative hypothesis:

Null Hypothesis: The planners differ in their judgements about which in-

dividual problem instances are hard within a given domain/level combination.

Alternative Hypothesis: The planners demonstrate significant agreement

about the relative difficulties of the problem instances within any given do-

main/level combination.

The results of the tests are shown in Figure 1 (repeated from [3]). The cells in the

Fully Strips Numeric HardNumeric SimpleTime Time Complex

Automated

Depots F21,110 = 5.3 F21,44 = 5.48 F21,66 = 1.77 F20,63 = 2.14

DriverLog F19,100 = 17.1 F19,40 = 17.4 F19,40 = 4.05 F19,60 = 4.44 F19,60 = 4.63

ZenoTravel F19,100 = 21.7 F19,40 = 14 F19,60 = 9.4 F17,36 = 12.1

Rovers F19,80 = 4.54 F18,38 = 9.47 F19,60 = 4.25 F19,40 = 6.92

Satellite F19,100 = 7.36 F15,48 = 1.74 F19,20 = 11.8 F19,60 = 3.6 F19,60 = 4.19 F19,60 = 3.78

FreeCell F19,100 = 6.21

Settlers F5,6 = 1.6

Fig. 1. F-values for the multiple judgments rank correlation tests.

figure report the F values obtained (and the degrees of freedom used). In almost all cases

the critical value was exceeded and the null hypothesis of non-agreement could be re-

jected for at least the 0.05 level. In a few cases (those reported in bold font) the critical



value was not exceeded and no statistical evidence was therefore found of agreement

between the planners about the difficulty of instances in the corresponding domain and

level. It is interesting to note that the problematic cases are all within the NUMERIC

level, for both fully-automated and hand-coded (knowledge-intensive) planners. This

collection of problems includes actions with numeric effects and preconditions, rather

than only logical conditions. In this competition they were a very new feature and per-

formance in domains where they were used was quite variable.

Once we had established where there was agreement between planners about the

difficulty of problems, we were also able to consider the relative scaling behaviours

of planners on these problems (which is not possible if the planners do not agree on

which problems are hard). In some cases the subset of problems on which there was

consistent agreement about relative difficulty was too small to make comparisons of

scaling behaviour reliable. This is one area where an opportunity to examine the data

before creating further tests might have led to more careful generation of test cases for

scaling.

Our results in this case are shown in figure 2. The columns denote planners per-

forming on individual types of domains (the competition had five or six variants of

each domain, emphasising different language features in each case). The rows denote

the planners and each cell contains the comparison between the corresponding pair of

planners on a single domain variant type. We use
⊙

to indicate that there is insuffi-

cient agreement between the planners on the difficulty of domains, or the ranking of

problems, for a comparison to be drawn. We use
⊗

to indicate that one of the planners

in the pair being compared produced insufficient data for a comparison to be made.

As can be seen, there are several places where the agreement between planners over

the precise ranking of individual problems was too limited to support a further test for

scaling performance (the situation denoted with
⊙

in figure 2). To avoid duplication

of data we place entries as positive correlations only in the cell corresponding to the

row for the planner favoured by the comparison. For example, FF is favoured in the

comparisons with LPG, MIPS, Sapa and VHPOP. Once again, in these tests we used

FF LPG MIPS Sapa VHPOP

STRIPS NUMERIC STRIPS NUMERIC SIMPLE TIME TIME STRIPS SIMPLE

TIME TIME

FF 0.36
⊙

0.87 0.93
⊗ ⊗

0.93
⊗

LPG
⊙

0.52 0.51 0.61 0.58 0.44 0.48

MIPS
⊙ ⊙

Sapa
⊗ ⊗ ⊙ ⊙

VHPOP
⊙ ⊗ ⊙ ⊗ ⊗

Fig. 2. Table showing correlation values, for fully-automated planners, between problem diffi-

culty and difference in time performance, indicating scaling behaviour.

ranks rather than absolute values in order to avoid relying on any assumptions about

the distributions. In this case, we used a Spearman rank correlation test. For those who



are interested, a detailed discussion of the results and their interpretation is given in [3].

Our purpose here is to draw attention to the technique we used and the way in which it

was applied.

4 Conclusion

In this paper we have discussed the IPC series which has proved highly influential

in promoting the development of AI planning technology in the past eight years. We

have briefly reviewed some of the issues that have arisen in the conflict between the

goals of a competition and the goals of a scientific study. We have also described our

own experiences in evaluating data generated in the 3rd IPC and we have discussed

several of the statistical approaches we used in testing hypotheses about the relative

performances of the competing planners. These techniques are, of course, widely known

in the empirical sciences, but we believe that they should be of particular interest to the

AI community, where they are, in our experience, less well known and even less widely

used. Apart from stimulating huge growth in the power of planning systems, both in

the expressiveness of the models they can handle and in the speed with which they can

plan, the IPC series has also been central in promoting a more rigorous approach to

empirical evaluation of planning systems and the use of more extensive data collection

and evaluation. This is a healthy trend that should be encouraged in planning and in the

wider AI community.
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