
Extending the Use of Plateau-Escaping Macro-Actions in Planning

Amanda Smith
Department of Computer and Information Sciences,

University of Strathclyde,
26 Richmond Street,
Glasgow, G1 1XH

email: amanda.smith@cis.strath.ac.uk

Abstract

Many fully automated planning systems use a single, domain-
independent heuristic to guide search and no other problem-
specific guidance. While these systems exhibit excellent per-
formance, they are often out-performed by systems which
are either given extra human-encoded search information, or
spend time learning additional search control information off-
line. The benefit of systems which do not require human in-
tervention is that they are much closer to the ideal of auton-
omy. This document discusses a system which learns addi-
tional control knowledge, in the form of macro-actions, dur-
ing planning, without the additional time required for an on-
line learning step. The results of various techniques for man-
aging the collection of macro-actions generated are also dis-
cussed. Finally, an explanation of the extension of the tech-
niques to other planning systems is presented.

Introduction

This document introduces the core ideas in the investiga-
tion into the management, and extension of use, of plateau-
escaping macro-actions in planning. The ideas are explored
in a planner called Marvin (Coles & Smith 2004), which
competed in the Fourth International Planning Competition
(IPC 4). In the competition Marvin generated plateau-
escaping macro-actions and used them later in the search
process to solve each problem. This investigation extends
this approach to allow the caching of these macro-actions
for use again in solving future problems, and the issues
of library management this entails. Further ideas related
to widening the applicability of plateau-escaping macro-
actions to other heuristics and other planning technologies
are also explored. Many previous approaches to macro-
action generation and management require an offline learn-
ing step (Botea, Muller, & Schaeffer 2004) (or human inter-
vention (Nau et al. 2003)) to generate a set of macro-actions
which are then used, unchanged, in solving the remainder of
the problem. This approach differs from existing approaches
in that it does not require additional offline learning time to
generate and filter macro-actions: they are filtered and se-
lected dynamically.

Plateau Escaping Macro-Actions

The underlying search strategy used by Marvin is based on
enforced hill-climbing as used in FF (Hoffmann & Nebel

2001). In the process of using EHC to perform forward-
chaining heuristic search, guided by the RPG ‘h+’ heuris-
tic, plateaux are encountered. Plateaux occur when a local
minimum in the search space has been reached and all suc-
cessor steps require either a sideways move (not changing
the current heuristic value) or an uphill move (increasing the
current heuristic value). It is these plateaux that are the core
difficulty encountered when planning: it is relatively easy
to make progress towards the goal when the heuristic is be-
ing informative; however, the exhaustive search performed
to escape a plateau is expensive. On inspection of the steps
required to escape plateaux in a given domain, it is often
the case that the same sequence of actions is used to escape
many plateaux, but with different parameter bindings.
As exhaustive search is required to escape from a plateau,

construction of plateau-escaping action sequences is compu-
tationally expensive. Since plateau-escaping sequences of-
ten have similar structure, it is clear that memoising these
action sequences for later use—when plateaux are once-
again encountered—can potentially reduce planning time.
Plateau-escaping action sequences are used to construct
plateau-escaping macro-actions; these can be applied by
the planner upon reaching later plateaux. The extraction of
plateau-escaping macro-actions from plateau-escaping se-
quences is computationally inexpensive: the planner sim-
ply notes the sequence of actions applied since the start of
the plateau. Generation of plateau-escaping sequences is ex-
pensive but since the search to find these sequences is being
done anyway, to solve the planning problem, no additional
search must be done to generate the macro-actions. The im-
pact on planner performance caused by these macro-actions
has been evaluated (Coles & Smith 2005).

Inferring Plateau-Escaping Macro-Actions

When the start of a plateau is detected—that is, when no
successor state with a strictly-better heuristic value can be
found—best-first search commences from the current state.
During best-first search, each successor state stores the ac-
tions that have been applied to reach it since the start of the
plateau: when a strictly-better state is eventually found, this
list of actions is the plan segment that forms the basis of the
plateau-escaping macro-action.
In order to make the macro-actions produced as useful and

reusable as possible the plan segment is processed before



0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120

H
e
u
ri
s
ti
c

Plan Time Step

Without Macro-Actions
With Macro-Actions

Figure 1: Heuristic Landscape over Makespan, With and
Without Macro-Actions

being made into a macro-action. Any independent threads
of execution that exist in the plan are separated to produce
macro-actions involving as few entities as possible.

Caching Macro-Actions

Having solved one problem in a given domain it would be
wasteful to disregard everything that has been learnt in doing
so when going on to solve another problem in the same do-
main. Many of the plateau-escaping macro-actions provide
a useful insight into the structure of the search landscape,
under the RPG heuristic, across many problems in a given
domain not just for a single problem. For example, figure
1 shows the heuristic profile across the solution plan, with
and without plateau-escapingmacro-actions, to a problem in
the philosophers domain taken from IPC 4. The structure is
common to all of the problems in the philosophers domain.
It can clearly be seen that the macro-actions allow the plan-
ner to skip across plateaux exploiting the knowledge gained
during previous search to solve a given problem. It would
be useful to store macro-actions for use in solving future
problems in the same domain. In doing this, however, the
issue of increasing the branching factor in the search space
by adding macro-actions becomes even more critical.

A large library of macro-actions is generated; a good
pruning strategy is therefore essential. If the planner were
to store all macro actions generated during the process of
solving all problems, and then consider their application at
every point during the search, the performance of the planner
would almost certainly degrade significantly. One macro-
action caching strategy was shown to improve planning per-
formance over a configuration using no macro-actions and
over the configuration generating macro-actions on a per-
problem basis (Coles & Smith 2005).

Managing a Library of Cached Macro-Actions

Many machine learning techniques work by solving the
problems with and without using a given feature, in this case
macro-action, and compare the results obtained from both

tests to decide whether or not that feature is beneficial. In
this approach, however, since the goal is to do the learning
online, without the need to solve additional problems, a dif-
ferent strategy is required. Online learning has two major
benefits, the first being the removal of the requirement to
solve additional problems; the second is that learning can
be done not only on small instances (which may not accu-
rately represent the larger, more interesting, problems) but
also on the larger instances giving information that is poten-
tially more useful.
Each problem is solved only once, this means that the con-

ventional supervised learning techniques used by many sys-
tems cannot be used. Due to the nature of the macro-actions
used, it is possible to do learning without the need to test the
performance of the system with and without each macro-
action. The only information available to the system is the
number of times the macro-action has been used and the
number of problems that have been solved since the macro-
action was last used. The strategy for pruning will therefore
be based on the usage statistics. If a macro-action is going
to be rated based solely on usage statistics there must be a
strong reason to believe that use of such a macro-action will
improve planner performance. In the general case it may be
that a macro-action is used frequently but does not greatly
improve search performance: the heuristic may have led
search quickly in the appropriate direction without the need
for the macro-action. Plateau-escaping macro-actions, how-
ever, avoid exhaustive search; it is therefore far more rea-
sonable to use the premise that the application of a plateau-
escaping macro-action implies a time saving as a basis for
this caching strategy. A similar observation was made by
Minton (Minton 1985). The evaluation of the caching strat-
egy itself will determine whether or not this is a reasonable
premise on which to base a caching strategy.
The information available from the usage statistics of

macro-actions is stored with each macro-action in the li-
brary: that is, the number of times the given macro-action
has been used and the number of problems solved since the
macro-action was last used. Three different approaches to
caching macro-actions have been considered, each with var-
ious different parameters.

Search-Time Pruning

The most obvious approach to library management is sim-
ply to keep all of the macro actions ever generated. The
advantage of this is that no useful macro-actions will ever
be pruned as a result of an overly aggressive pruning strat-
egy. The disadvantage is the the library of stored macro-
actions will grow indefinitely and macro-actions which are
of no use will be kept and may have to be considered during
search. This has the potential to greatly increase the branch-
ing factor and make search to find a solution to the problem
considerably more difficult.

Time-Out Pruning

The motivation for time-out pruning is to reduce the size
of the library of macro-actions by removing those macro-
actions which have not been useful in solving recent prob-
lems. The basis of this strategy is to remove macro-actions



that have not been used in solving the last n problems from
the library. Some macro-actions are never re-used after be-
ing discovered once: such actions will be removed from the
library reasonably quickly, thus only being present increas-
ing the branching factor in a few problems.
The success of this strategy will clearly depend on the

decided value of n, the caching interval. If the caching in-
terval is very short, i.e. n is small, then potentially useful
macro-actions may be discarded too hastily; if the caching
interval is too large then it is likely that the planner will have
to deal with large numbers of non-reusable macro-actions.
The value of n that gives the best results varies on a domain-
dependent basis; however, in order to create a fully auto-
mated system a single value of n must be decided upon.
Investigations so far show that value giving the best perfo-
mance considering all of the domains evaluated is n = 2.

Survival of the Fittest

The pruning strategy employed in this approach is to keep
only the nmost used macro-actions in the library. The larger
the value of n is, the more the branching factor is poten-
tially increased; the smaller the value of n, the greater risk
of discarding useful macro-actions. The advantage of this
approach over the time-out approach is that macro-actions
that are useful in many problems will not be deleted from
the library simply because they are not used in a (potentially
short) run of adjacent problems. This approach also imposes
an upper limit on the size of the library meaning that the in-
crease in branching factor is more tightly controlled but a
number of the best macro-actions can still be kept.

Investigating the Properties of Useful

Macro-Actions

Many systems using macro-actions impose arbitrary limits
on both the number of macro-actions to be used by the sys-
tem at any given time and the maximum length of macro-
actions. A flexible system that can dynamically select which
macro-actions to use can, however, allow a thorough investi-
gation of the characteristics of useful macro-actions without
disregarding certain classes of macro-actions.
Figure 2 shows the mean number of uses of macro-actions

of various lengths across a range of domains, most of which
are taken from IPC 3 and IPC 4. Many previous approaches
have been based on the idea that only macro-actions with
short lengths should be used, without necessarily fully in-
vestigating usage statistics. It can be seen from the re-
sults that plateau-escaping macro-actions of length 2 are
used the most frequently but it is interesting to note that
macro-actions of other lengths are quite often used. Further-
more logic suggests that use of a longer plateau-escaping
sequence will result in a greater performance improvement
as more exhaustive search is potentially avoided. Of note
is a very large macro-action, of length 71, that was gener-
ated in the blocksworld-4ops domain. Further experiments
have shown that the use of this macro-action allows three
extra problems to be solved within the 30 minute time limit.
It is worth noting though that, despite this, performance is
degraded slightly on some problems.

 0

 200

 400

 600

 800

 1000

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80

Usage Frequency for each Length of Macro-Action

Normalised

Figure 2: Normalised Usage Statistics for Differing Lengths
of Macro-Actions

Generation and Use of Plateau-Escaping

Macro-Actions Under Other Heuristics

Although this technique has been developed and discussed
primarily using enforced hill-climbing under the RPG
heuristic the idea can extend to other types of planning tech-
nology using different heuristics.

Generating Plateau-Escaping Macro-Actions for
the Downward Heuristic

The idea of plateau-escaping macro-actions can be easily
mapped to other heuristics used in forward chaining search.
Different heuristics give rise to different search landscape
profiles; it is, however, the case that all heuristics will have
a weakness somewhere1. In forward chaining search this
can often be characterised by the plateau-like situations ob-
served in FF.

Experiments suggest that the generation of macro-actions
can improve the performance of a planner using the down-
ward heuristic to perform enforced hill-climbing. It is how-
ever often the case, contrary to the results generated using
the RPG heuristic, that a version of the planner generating
macro-actions on a per-problem basis generally performs
better than a version caching these macro-actions for future
use. This is due to the different nature of the two heuris-
tics: the relaxation formed by the RPG heuristic is fixed
and will model problems in the same domain in a similar
manner. During the calculation of the downward heuris-
tic, however, a step that breaks links based on dependencies
is introduced, and the number of dependencies on a given
graph-link varies between problems. It is therefore, often the
case, that the downward heuristic will give a more different
landscape between problems in the same domain, render-
ing caching of plateau-escapingmacro-actions less effective.

1That is, of course unless a solution to the problem is to be
used as a heuristic which is, of course, not useful: if a solution to
the plan construction problem is found it is no longer necessary to
search for one.



Macro-actions generated on the same problem, however, ap-
pear to give a greater performance improvement than using
the equivalent technique under the RPG heuristic.

Further Work

The investigation is to be extended further to explore the
wider applicability of plateau-escaping macro-actions. This
includes use of plateau-escaping macro-actions, generated
under the RPG heuristic, in planners that do not use this
heuristic. The motivation for this is that the core hard part
of a problem exists when solving it using any approach, and
that part does not lie where the relaxed planning graph can
accurately model the problem polynomially. Other work to
be pursued in conjunctionwith Adi Botea and AndrewColes
is to investigate the observation that some macro-actions ap-
pear to improve search performance due to their role in im-
proving accuracy of the heuristic estimate rather than their
application during search.
The extraction of plateau-escaping macro-actions from

solution plans for use in various planners is to be consid-
ered. Extraction of macro-actions from optimal plans is an
extension of this approach: such macro-actions have the po-
tential to reduce the makespan of plans by encouraging the
planner to take a route that has previously resulted in an op-
timal solution.

References

Botea, A.; Muller, M.; and Schaeffer, J. 2004. Us-
ing component abstraction for automatic generation of
macro-actions. In Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2004), June 3-7 2004, Whistler, British Columbia,
Canada, 181–190.

Coles, A., and Smith, A. 2004. Marvin: Macro-actions
from reduced versions of the instance. IPC4 Booklet, Four-
teenth International Conference on Automated Planning
and Scheduling (ICAPS 2004). Extended Abstract.

Coles, A. I., and Smith, A. J. 2005. On the inference and
management of macro-actions in forward-chaining plan-
ning. In Tuson, A., ed., Proceedings of the 24th UK Plan-
ning and Scheduling SIG.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.

Minton, S. 1985. Selectively generalizing plans for
problem-solving. In In Proceedings of the Ninth Inter-
national Joint Conference on Artificial Intelligence, IJCAI
’85), 596–599.

Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN planning sys-
tem. Journal of Artificial Intelligence Research 20:379–
404.




