Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Extracting partition statistics from semistructured data

Wilson, John N. and Gourlay, Richard and Japp, Robert and Neumüller, Mathias (2006) Extracting partition statistics from semistructured data. In: 17th International Workshop on Database and Expert Systems Applications (DEXA 2006), 2006-09-04 - 2006-09-08.

[img]
Preview
Text (strathprints002387)
strathprints002387.pdf - Accepted Author Manuscript

Download (163kB) | Preview

Abstract

The effective grouping, or partitioning, of semistructured data is of fundamental importance when providing support for queries. Partitions allow items within the data set that share common structural properties to be identified efficiently. This allows queries that make use of these properties, such as branching path expressions, to be accelerated. Here, we evaluate the effectiveness of several partitioning techniques by establishing the number of partitions that each scheme can identify over a given data set. In particular, we explore the use of parameterised indexes, based upon the notion of forward and backward bisimilarity, as a means of partitioning semistructured data; demonstrating that even restricted instances of such indexes can be used to identify the majority of relevant partitions in the data.