
Generic Types and their Use in Improving the Quality of Search Heuristics

Andrew Coles
Department of Computer and Information Sciences

University of Strathclyde
26 Richmond Street,
Glasgow, G1 1XH

email: andrew.coles@cis.strath.ac.uk

Abstract

This abstract discusses work looking into techniques for im-
proving the quality of the search heuristics used to guide
forward-chaining planning. The improvements in heuris-
tic quality are made by performing a static analysis of the
planning problem to identify commonly occurring ‘generic
types’, and providing additional heuristic guidance based on
their known properties. In doing so, the heuristic is tailored
to the identified properties of the domain and can provide a
more realistic heuristic value and refined relaxed plan. This
can potentially lead to reduction in the time taken to find a
plan, and the generation of shorter plans.

Introduction

Forward-chaining planning guided by a heuristic has proved
to be an effective planning strategy in a range of planning
domains. At recent international planning competitions,
many of the participating planners followed this search ap-
proach; of particular note is FF (Hoffmann & Nebel 2001),
which participated with great success in the 2002 and 2000
competitions. Work on HSP (Bonet & Geffner 2000) and
Downward (Helmert 2004) has explored alternative heuris-
tics. What all these planners share, however, is that the
heuristic goal-distance estimate they provide is obtained
from a ‘relaxed’ version of the original problem, i.e. one
from which some constraints have been removed. The re-
laxation of the original problem in this manner is necessary
to allow a heuristic value to be obtained in a reasonable time;
however, it does reduce the accuracy with which the relaxed
problem is able to model certain aspects of the original prob-
lem.
Using static analysis techniques, such as those performed

by TIM (Long & Fox 2000), it is possible to identify
‘generic types’ of objects within planning problems: for
instance, self-propelled mobile objects capable of moving
from one location to another. These generic types form sub-
problems with known properties with which type-specific
heuristics can be used: for instance, using the Floyd Wal-
shall algorithm to calculate the cost of moving a mobile from
one location to another. HybridSTAN (Fox & Long 2001),
a forward-chaining heuristic planner, took the approach of
isolating these known sub-problems when planning, remov-
ing all predicates pertaining to the location of mobiles from
the domain. Once a solution plan was found, actions were

inserted into the plan to move the mobile objects to the lo-
cations needed for the actions used.

The decomposition approach of HybridSTAN relies on
being able to cleanly isolate the sub-problem, which is only
possible if it is wholly described by the generic type. For
example, if the move action for the mobile requires another
condition to be satisfied (such as one defining whether a door
is open between the two locations) then the subsolver cannot
handle the additional constraints imposed. In these cases, is
not possible to add the missing actions to the plan as required
once the remainder of the problem has been solved, as it is
no longer clear which actions are needed.

To this end, this work is concerned with investigating
whether the static domain analysis used to discover sub-
problems can be used to improve the quality of the relax-
ation heuristic used, in this case the Relaxed Planning Graph
heuristic, without relying on being able to solve the identi-
fied subproblems in isolation. By improving the heuristic,
and the guidance it provides through state space, the aim is
to reduce the time taken to find solution plans and to improve
the quality of plans found.

Background

Generic Types

TIM is capable of identifying objects, or groups of objects,
within planning problems as having a recognisable generic
behaviour and thus being of a certain generic type. TIM
first analyses planning problems to discover the ‘property
spaces’ relating to each of the objects. From these, generic
types are identified by looking for hand-coded patterns of
transitions within the property spaces. Included in these
generic types are mobiles and resources. Mobiles have a
location property, the value of which is changed by the ap-
plication of ‘move’ actions to move the mobile from one
location value to another. The locations at which the mobile
can be located are arranged into a map; directed edges exist
in the map between pairs of locations where a feasible move
action exists to move the mobile from the source location
to the destination. At no point, either in the initial state or
any sound, reachable, state is is it possible for a mobile to be
located at more than one location.

Resources are a special case of mobiles, whose map con-
sists of a series of linearly interconnected nodes. An edge



can be drawn from a node A to a node B if there exists an
action capable of moving the mobile denoting the resource
level from A to B; an edge can be drawn from B to A if
there exists an action capable of moving the resource level
from B to A. Edges in one direction correspond to increasing
the resource level; edges in the other direction correspond to
decreasing the resource level.

Known generic types can sometimes arise in unexpected
situations, where human intuition might not have expected
them. Any object which has a predicate relating it to one of
a series of other objects and a corresponding action schema
which changes this assignment is identified as a mobile ob-
ject.

Generic Types and the Relaxed Planning Graph
Heuristic Landscape

The relaxed planning graph heuristic, as first used in FF, has
proved to be a useful heuristic for guiding forward-chaining
planning. The relaxation used as a basis for the heuristics is
to ignore the delete lists (negative effects) of the domain ac-
tions; Graphplan (Blum & Furst 1995) is then used to solve
this relaxed problem, although only a subset of the algorithm
needs to be implemented as the planning graph does not con-
tain mutexes due to the removal of delete effects.

When delete lists are ignored, once a fact has been estab-
lished by an action, it is available for use as a precondition
to all the subsequent actions in the plan. This has some in-
teresting effects on how well the relaxed problem is able to
model some aspects of known generic types within planning
problems. When the move actions of mobile objects are in-
voked, the effects of the action normally establish two facts:
the mobile is now located at the destination; and the mobile
is no longer located at the source. Similarly, when action
increasing or decreasing resource levels are invoked: the re-
source level is now that resulting from the action; and no
longer holds the previous value. Ignoring the delete effects
of move actions (or resource-level-altering actions), as done
when forming the relaxed planning problem, removes the
effects that establish that once a mobile has moved it is no
longer at its previous location. Effectively, when executing a
relaxed plan, mobiles are simultaneously available at all the
locations they have ever been, and resources are available at
all levels they have held.

When dealing with resources, this can have a substantial
impact on how well the relaxed planning problem models
the original: if a resource level is non-zero in the initial state
from which a relaxed-plan is built, it is available at that non-
zero level throughout. In FreeCell, for instance, if there is
one free cell available in a given state, the relaxed plan to
the goal from that state can make use of an effectively un-
limited number of free cells. No action is able to reduce
the number of free cells available by subsequent actions, as
the delete effect that would establish that the free cell count
is lowered when a card is placed in a free cell has been re-
moved. This can lead, for instance, to relaxed plans which
state that as many cards as necessary should be moved to a
free cell and then the cards should be moved to the home
cells in the correct order.

This over-optimism in the presence of a resource level of
one by the relaxed planning graph heuristic has a profound
effect on search: up to, and including the point, where there
is still a non-zero resource level, as much of the resource as
desired is available so a relaxed solution plan can be found.
However, as soon as an action reduces a resource level to
zero, the nature of the relaxed plan changes dramatically: if
that resource is required then actions must be added to the re-
laxed solution plan to increase the resource level (assuming
such resource-increasing actions are available). This sudden
change in relaxed plan can lead to unforeseen dead-ends, or
a sudden increase in relaxed plan length - both of which have
a negative impact on search performance.

The multi-locatedness of mobiles under the ignore-delete-
lists relaxation—that is, a mobile is available at all the loca-
tions it has ever been at thus far in the relaxed plan—can lead
to some interesting relaxed plans being formed. Consider,
for instance, a logistics problem in which a truck, beginning
in location A, must collect a package from location E and
deliver it to location A. The relaxed plan forwards from the
initial state moves the truck from A to E (via B, C and D),
loads the package into the truck and immediately unloads it
at A: this ‘teleportation’ of the package from E to A, without
the truck having to move back again, occurs because the fact
that the truck is in location A was never deleted and, thus,
the unload action placing the package at A is immediately
applicable.

Relaxed Plan Refinement using Generic Types

Refining Relaxed Plans

In many cases, one can identify actions that are logically
missing from relaxed plans that would need to be inserted in
order to make the plan executable if delete lists were con-
sidered. Through analysis of the behaviour of known-typed
objects in the plan, it is possible to suggest what some of
the missing actions are, and produce a relaxed plan which is
somewhat ‘less relaxed’ than it was previously.

When dealing with mobiles, if a precondition of one ac-
tion demands that a mobile be in one location, and the pre-
condition an action immediately following it demands that it
be in another, then it is clear that actions to move the mobile
from the former location to the latter would be necessary.
As the map describing how the mobile can traverse between
its locations is known, a path between all possible pairs of
locations that may arise can be determined, in polynomial
time, using the Floyd Walshall algorithm. The additional
actions corresponding to the mobile moving along this path
can be added to the relaxed plan, making it a closer analogue
of a real solution plan, and increasing the heuristic cost by
number of actions added.

The level of a resource is denoted by an assignment to a
series of ranked objects. Actions which increase the level
of the resource change the assignment denoting the resource
level to a higher-ranked object; actions which decrease the
level of the resource change the assignment to a lower-
ranked object. By starting with the resource level in the
state from which the relaxed plan was built, the cumula-
tive resource-level effects of the actions in the relaxed plan



can be monitored: resource-increasing actions move the cur-
rent resource level one place higher up the rank; resource-
decreasing actions move it one place lower. If at any point
an action attempts to move the resource level to off the top
of the rank or off the bottom of the rank, a decreasing or
increasing action needs to be inserted as appropriate. Such
actions are not available in all cases; if they are not, a penalty
can be added the heuristic value returned (the plan length) to
dissuade search from considering plans whose relaxed solu-
tions appear to violate resource limits. This is similar to the
adjusted cost heuristic used in Sapa (Do & Kambhampati
2003), but as TIM provides finite bounds on the resource
levels it is possible to penalise resource flows through the
relaxed plan that would take the resource level both below
and above its bounded values.

The effect of relaxed plan extraction on plan
refinement

The process to extract a relaxed plan from a GraphPlan plan-
ning graph is designed to be as efficient as possible, to re-
duce the overhead of heuristic evaluation. When choosing
an achiever for each fact, the first achiever found when build-
ing the planning graph is used. The first achiever found,
however, varies between states, and can lead to dramatically
different relaxed plans being built, even if the plan lengths
are similar.
When refining the relaxed plans built in the conven-

tional manner, the penalty is heavily dependent on the first-
achieving actions found; in this case, adding actions to the
relaxed plan adds noise to the relaxed plan length, making it
difficult to decide which states are the most likely to lead to
a goal. In an attempt to address this problem, two alternative
plan extraction approaches are being investigated:

• A stochastic approach, called several times in an attempt
to minimise noise, in which one of the achievers for each
fact is chosen at random, rather than the first one found;

• A guided approach, called once, which uses a heuristic to
choose which successor to use.

These alternatives will lead to differing heuristic values
being found; which may lead to improved performance
and/or shorter plans.

Using Lookahead with Refined Plans

The heuristics discussed are invariably more expensive than
the baseline, unrefined, relaxed planning graph heuristic.
The ‘less-relaxed’ plans found are, however, closer to be-
ing solutions to the original planning problem than unrefined
relaxed plans; suggesting that it would be beneficial to use
more than just the plan length as a heuristic value to guide
search.
YAHSP (Vidal 2004), a planner which competed at the

2004 international planning competition, uses a lookahead
approach to generate an additional successor to each state.
The additional successor state is formed by applying as
many of the sequenced actions from the relaxed plan as pos-
sible. In YAHSP, in an attempt to satisfy some of the un-
satisfied preconditions of the actions in the relaxed plan, an

0.01

0.1

1

10

100

1000

10000

2 4 6 8 10 12 14 16 18 20

s
e
c
.

task nr.

Lookahead with Refined Relaxed Plans

Lookahead with Non-Refined Relaxed Plans

Figure 1: Time Taken To Solve Problems in the DriverLog
Domain with Lookahead on Refined and Non-Refined Plans

attempt is made to find one action that would add the un-
satisfied precondition. Adding action sequences to satisfy
preconditions is not, however, considered: if satisfying a
precondition requires more than one action, lookahead ter-
minates.

Performing lookahead on the less-relaxed plan provided
by the generic-type refinement, rather than the conventional
relaxed plan, should allow more actions to be applicable in
domains with recognised generic types. Within the refined
plan, move action sequences to satisfy locatedness precondi-
tions have been added; something which the lookahead pro-
cedure itself cannot do, as it only considers adding single ac-
tions to satisfy preconditions. The combination of these two
techniques allows the low-cost of the lookahead procedure
to be maintained, by it only considering adding single ac-
tions, whilst allowing action sequences to be inserted where
these can be determined using the generic types analysis.

Using lookahead provides a further possibility: using the
non-refined relaxed plan to provide a heuristic value; but
performing lookahead over the refined plan. Such a con-
figuration would have two benefits:

• lookahead can apply more actions than it would have done
otherwise, as action sequences to achieve mobile loca-
tions have been added;

• the low-cost greedy relaxed plan extraction procedure can
still be used, as the length of the non-refined plan (with-
out the aforementioned noise) is taken to be the heuristic
value.

Initial results in the DriverLog domain using this planner
configuration, presented in figure 1, suggest that the use of
refined plans in this manner increases the effectiveness of
lookahead, providing a reduction in planning time. It can be
seen that a small overhead is incurred through the analysis
of the generic types in the domain, but in larger problems the
reduction in planning time far outweighs this overhead. In
particular, problems 16 and 19 are solved in less time, and
problem 18 is solved where previously it was not (within the
30 minute time-limit to which the tests were subjected).



Selectively Introducing Delete Lists based on

Generic Type Information

Another approach to making the relaxed problem more real-
istic would be to introduce some of the delete effects which
are known to have controllable interactions within the prob-
lem, forming a ‘partially relaxed’ planning problem. In par-
ticular, if the delete effect when mobiles moved was main-
tained, the actions in the relaxed plan could not make use of
a mobile being in two locations at once.
Two approaches are being investigated to use to solve the

partially relaxed problem and return a heuristic measure:

• Using GraphPlan, as with the conventional relaxed plan-
ning problem, but handling the mutexes introduced by the
added delete effects

• Using a simple partial-order approach, dealing with the
mutexes by adding the necessary actions during plan time
- for example, a mutex between two actions requiring a
mobile to be at two locations can be dealt with by adding
actions between the two to move the mobile from one lo-
cation to the other.

Conclusions

This paper presented an overview of work investigating im-
proved search guidance; with a particular focus on the iden-
fication and use of generic type information to provide better
heuristic knowledge. To date, the relaxed plan extraction and
lookahead techniques have been implemented and an evalu-
ation is being performed. The implementation of the selec-
tive introduction of delete effects into the relaxed problem
still in progress.

References

Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. In Proceedings of the 14th Inter-
national Joint Conference on Artificial Inteligence (IJCAI-
95).

Bonet, B., and Geffner, H. 2000. HSP: Heuristic search
planner. Artificial Intelligence Magazine 21.

Do, M. B., and Kambhampati, S. 2003. SAPA: A multi-
objective metric temporal planner. Journal of Artificial In-
telligence Research 20:155–194.

Fox, M., and Long, D. 2001. Hybrid STAN: Identifying
and managing combinatorial optimisation sub-problems in
planning. In Proceedings of the 17th International Joint
Conference on Artificial Intelligence (IJCAI-01), 445–452.
Morgan Kaufmann.

Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2004), 161–170.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.

Long, D., and Fox, M. 2000. Automatic synthesis and use
of generic types in planning. In Proceedings of the 5th In-

ternational Conference on Artificial Intelligence Planning
and Scheduling (AIPS-2000), 196–205.

Vidal, V. 2004. A lookahead strategy for heuristic
search planning. In Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-2004), 150–159.




