Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Adaptive query-based sampling of distributed collections

Baillie, M. and Azzopardi, L. and Crestani, F. (2006) Adaptive query-based sampling of distributed collections. In: 13th Symposium on String Processing and Information Retrieval (SPIRE 2006), 2006-10-11 - 2006-10-13.

[img]
Preview
PDF (strathprints002281.pdf)
strathprints002281.pdf

Download (220kB) | Preview

Abstract

As part of a Distributed Information Retrieval system a de-scription of each remote information resource, archive or repository is usually stored centrally in order to facilitate resource selection. The ac-quisition ofprecise resourcedescriptionsistherefore animportantphase in Distributed Information Retrieval, as the quality of such represen-tations will impact on selection accuracy, and ultimately retrieval per-formance. While Query-Based Sampling is currently used for content discovery of uncooperative resources, the application of this technique is dependent upon heuristic guidelines to determine when a sufficiently accurate representation of each remote resource has been obtained. In this paper we address this shortcoming by using the Predictive Likelihood to provide both an indication of thequality of an acquired resource description estimate, and when a sufficiently good representation of a resource hasbeen obtained during Query-Based Sampling.