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Summary. We present a simple mathematical model of fluid flow in a Scraped-
Surface Heat Exchanger (SSHE). Specifically we consider steady isothermal flow of
a Newtonian fluid around a periodic array of pivoted scraper blades in a channel with
one stationary and one moving wall, when there is an applied pressure gradient in a
direction perpendicular to the wall motion. The flow is fully three-dimensional, but
decomposes naturally into a two-dimensional transverse flow driven by the boundary
motion and a longitudinal pressure-driven flow.
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1 Scraped-Surface Heat Exchangers (SSHEs)

Scraped-surface heat exchangers (SSHEs) are widely used in the food indus-
try to cook, chill or sterilize certain foodstuffs quickly and efficiently without
causing unwanted changes to the constitution, texture and appearance of the
final product. A SSHE is essentially a cylindrical steel annulus whose outer
wall is heated or cooled externally; the foodstuff is driven slowly by an axial
pressure gradient along the annulus, and a “bank” of blades rotating with the
inner wall (the “rotor”) is used to scrape it away from the outer wall (the
“stator”), preventing fouling, and maintaining mixing and heat transfer. The
blades typically are arranged in groups of two (180◦ apart) or four (90◦ apart);
sometimes pairs of blades are “staggered” axially. The processes that take
place inside SSHEs are complex; operating conditions vary with context, and
operators are guided largely by experience and empirical correlations. Typi-
cally SSHEs are used on highly viscous foodstuffs; examples include purées,
sauces, margarines, jams, spreads, soups, baby-foods, chocolate, mayonnaise,
caramel, fudge, ice-cream, cream and yoghurt. Such foodstuffs commonly be-
have as non-Newtonian materials, typically being shear-thinning, viscoplastic
and/or viscoelastic, as well as being inhomogeneous, and possibly undergoing
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Fig. 1. Geometry of the transverse flow problem.

phase changes; also they often have a strongly temperature-dependent viscos-
ity. Moreover, both convection and dissipation of heat can be significant in a
SSHE. Extensive literature surveys are given by Härröd [2, 3], and features of
the behaviour have recently been analysed by Stranzinger et al. [4], Fitt and
Please [1] and Sun et al. [5]. However, despite their widespread use, under-
standing of the behaviour of the material inside SSHEs is still incomplete.

In the present work we shall concentrate on the fluid flow rather than
the heat transfer inside a SSHE, and so we shall restrict our attention to
isothermal flow.

2 Transverse Flow

First we consider steady two-dimensional flow of an isothermal incompressible
Newtonian fluid of viscosity µ in a long parallel-sided channel of width H in
which there is a periodic array of inclined smoothly pivoted thin plane blades,
the flow being driven by the motion of one wall of the channel parallel to itself
with speed U (> 0), the other wall being fixed. Body forces are neglected.

We introduce Cartesian axes Oxyz as shown in Figure 1, with the wall
y = 0 moving with velocity U i, and the wall y = H fixed. Suppose a thin
plane freely pivoted blade occupies 0 ≤ x ≤ L, with its pivot fixed at (xp, hp),
where 0 ≤ xp ≤ L and 0 < hp < H ≪ L, and suppose that the separation
between the blades is ℓ (≥ 0), so that the portion L ≤ x ≤ L + ℓ of the
channel contains no blades. Let α (which may be positive or negative) denote
the angle of inclination of the blade to the x axis, as shown in Figure 1. In
the lubrication-theory approach used here we will assume that |α| ≪ 1; then
the blade is given by y = h(x) for 0 ≤ x ≤ L, where h(x) = hp + α(x − xp).

For steady flow the blade is in equilibrium, subject to forces due to the
fluid, the pivot, and (in general) the walls of the channel. Here we consider
cases where the ends of the blade are not in contact with the moving wall
y = 0 of the channel, so that 0 < h0, h1 ≤ H , where h0 = h(0) and h1 = h(L).
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We denote the velocities, pressures and volume fluxes (per unit width in
the z direction) by uk i + vk j , pk and Qk, where k = 1 denotes values in
0 ≤ x ≤ L, 0 ≤ y ≤ h, k = 2 denotes values in 0 ≤ x ≤ L, h ≤ y ≤ H ,
and k = 3 denotes values in L ≤ x ≤ L + ℓ, 0 ≤ y ≤ H . A lubrication
approximation gives

u1 =
[6Q1y + Uh(h − 3y)](h − y)

h3
, (1)

u2 =
6Q2(H − y)(y − h)

(H − h)3
, (2)

u3 =
[6Q3y + UH(H − 3y)](H − y)

H3
. (3)
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Setting x = 0 in (4) and (5) and x = L + ℓ in (6), we obtain three represen-
tations of p0 − pL:
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(10)

Expressions for the Qk (k = 1, 2, 3) and p0 − pL are obtained by solving (10)
and the global mass conservation condition Q1 + Q2 = Q3.

The moment of the forces on the blade about the pivot due to the pressure
is of the form M = Mk, where

M =

∫ L

0

(x − xp)(p1 − p2) dx. (11)

For equilibrium of the blade we require M = 0, which leads to a lengthy
algebraic transcendental equation determining α when L, ℓ, H , xp and hp
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are prescribed. Once α is known, the complete solution is determined. This
solution allows us to describe all the qualitative features of the transverse flow.
In particular, we can determine when the blades are in contact with the walls
of the channel. In addition we can calculate the forces on the blades and on
the walls of the channel, and hence make useful estimates of the torque and
power required to turn the rotor.

3 Longitudinal Flow

In a SSHE the material being processed not only undergoes flow in the trans-
verse direction (caused by the rotation of the rotor), but also is driven by
an imposed axial pressure gradient along the annular gap between stator and
rotor. To model this fully three-dimensional flow we consider the effect of al-
lowing flow along the channel in the z direction, in addition to the flow in the
(x, y) plane, discussed above. We take the blades to be long in the z direction
so that the lubrication approximation may again be used. It is found that the
motion in the z direction uncouples from that in the (x, y) plane. Thus with
velocities and pressures denoted by uk i + vk j + wk k and Pk for k = 1, 2, 3
(with uk, vk, wk and Pk functions of x, y and z), we find that

w1 =
G

2µ
y(h − y), w2 =

G

2µ
(H − y)(y − h), w3 =

G

2µ
y(H − y), (12)

and Pk = −Gz + pk, where G = −∂Pk/∂z is the (constant) prescribed
axial pressure gradient, and the velocity components uk = uk(x, y) and
vk = vk(x, y) and the pressure contributions pk = pk(x, y) are exactly as
given for the transverse (two-dimensional) flow described above. The volume
flux of fluid in the z direction across the section 0 ≤ x ≤ L + ℓ, 0 ≤ y ≤ H is
given by
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. (13)

The force (per unit axial length) in the z direction on the blade due to the
fluid is given by Fz = GHL/2, and the forces (per unit axial length) in the z
direction on the portions 0 ≤ x ≤ L + ℓ of the lower wall y = 0 and the upper
wall y = H due to the fluid are
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(15)
respectively.
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4 Summary

In this short paper we presented a simple mathematical model of fluid flow
in a SSHE. Specifically we considered steady isothermal flow of a Newtonian
fluid around a periodic array of pivoted scraper blades in a channel with one
stationary and one moving wall, when there is an applied pressure gradient in a
direction perpendicular to the wall motion. The flow is fully three-dimensional,
but decomposes naturally into a two-dimensional transverse flow driven by
the boundary motion and a longitudinal pressure-driven flow. In the future
we plan to extend our analysis to include other practically important features
neglected in this simple model, including blade wear and, of course, non-
isothermal effects.
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