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We use the lubrication approximation to analyze the steady unidirectional flow of a thin rivulet on

a vertical substrate subject to a prescribed uniform longitudinal shear stress at its free surface. In

particular, we determine the quasisteady stability of a rivulet of prescribed flux, and calculate when

it is energetically favorable for a rivulet to split into two narrower rivulets. © 2005 American

Institute of Physics. �DOI: 10.1063/1.2100987�

Rivulets of fluid subject to significant surface-shear

forces occur in a variety of contexts, including the rivulets of

rainwater and/or deicing fluid that form on the wings of air-

craft, the rivulets of condensate that frequently occur within

heat exchangers, and even the rivulets of rainwater that occur

on the windscreen of a rapidly moving car on a rainy day.

Various aspects of rivulet flow in the presence of significant

surface-shear forces have been investigated by, for example,

Mikielewicz and Moszynski,
1

Eres, Schwartz, and Roy,
2

Wil-

son, Duffy, and Hunt,
3

Myers, Liang, and Wetton,
4

and Saber

and El-Genk.
5

In this Brief Communication we use the lu-

brication approximation to analyze the steady unidirectional

flow of a thin rivulet on a vertical substrate subject to a

prescribed uniform longitudinal shear stress at its free

surface.

Consider the steady unidirectional flow of a thin sym-

metric rivulet with constant semiwidth a and constant vol-

ume flux Q on a vertical substrate subject to a prescribed

uniform longitudinal shear stress � at its free surface. We

assume that the fluid is Newtonian and has constant density

�, viscosity �, and surface tension �. We choose Cartesian

axes Oxyz with the x axis vertically downwards and the z

axis normal to the substrate z=0. The velocity u=u�y ,z�i and

pressure p= p�x ,y ,z� of the fluid are governed by the famil-

iar mass-conservation and Navier-Stokes equations subject to

the usual normal and tangential stress balances and the kine-

matic condition at the �unknown� free surface z=h�y�, and

zero velocity at the substrate z=0. At the contact line y=a,

where h=0, the contact angle takes the prescribed value �,

where ��0 is the �nonzero� static contact angle.

Analytical progress can be made when the rivulet is thin

�with, in particular ��1� in which case it is appropriate to

nondimensionalize y and a with l, z and h with �l, u with

U=�g�2l2 /�, Q with �l2U=�g�3l4 /�, p− p� with �g�l, and

� with �g�l, where l= �� /�g�1/2 is the capillary length, g is

gravitational acceleration, and p� is atmospheric pressure.

Henceforth all quantities are nondimensional unless it is

stated otherwise. The leading-order problem can be immedi-

ately solved to yield the simple solution p=−h�=1/a, u

= �2h−z�z /2+�z, h= �a2−y2� /2a. Note that since the flow is

unidirectional, the mass-conservation equation and the kine-

matic condition are satisfied identically, and the solution is

valid for all values of the Reynolds number. �In particular,

the comment made by Myers et al.
4

about the restriction on

the applicability of the thin-film approximation is erroneous.�
The maximum thickness of the rivulet occurs at y=0 and is

equal to hm=h�0�=a /2. The flux Q is given by

Q = �
−a

+a �
0

h�y�

u�y,z�dzdy =
4a4

105
+

2�a3

15
. �1�

For �	0 the flux Q is a monotonically increasing function of

a, but for �
0 the flux Q initially decreases monotonically

to a minimum value of Q=Qmin=−4amin
4 /315

=−3087�4 /5120�
0� at a=amin=−21� /8, before increasing

monotonically through the value Q=0 at a=a0=−7� /2.

There are five possible types of flow pattern �denoted as

types I–V� as sketched in Fig. 1. When ��0 the prescribed

shear stress acts in the same direction as gravity. In this case

the velocity is always downwards �i.e., u�0� throughout the

rivulet, and the maximum velocity umax=a�a+4�� /8��0�
occurs on the free surface at y=0 and z=hm=a /2 �type I�.
On the other hand, when �
0 the prescribed shear stress

opposes gravity, and this competition leads to more interest-

ing behavior than in the case ��0. In particular, the velocity

is always upwards �i.e., u
0� near the edges of the rivulet,

but it can be downwards �i.e., u�0� elsewhere. When

a�−2� the velocity is always upwards throughout the rivu-

let, and the minimum velocity umin=a�a+4�� /8�
0� occurs

on the free surface at y=0 and z=hm=a /2 �type V�, but

when a�−2� there is a region of downwards flow in the

center of the rivulet and the maximum velocity umax= �a
+2��2 /8��0� occurs within the flow at y=0 and z=hm+�
= �a+2�� /2, and the minimum velocity umin=−�2 /2�
0� oc-

curs on the free surface at y= ±b= ±a�1+2� /a�1/2 and

z=−� �type II when a�−4�, type III when a=−4� and type

IV when −2�
a
−4��. Note that both the solution a=a0

=−7� /2 corresponding to Q=0 and the solution
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a=amin=−21� /8 corresponding to Q=Qmin have type IV be-

havior. The different flow patterns that can occur when �

0 can be understood by realizing that the local downwards

flux due to gravity varies with h like h3 while the local up-

wards flux due to shear stress varies like h2. Thus when h


−� �and, in particular, near the contact line� the flow is

always upwards, while if h�−� the flow is downwards near

the substrate and if h�−2� the flow is downwards all the

way across the rivulet.

The present solution can be interpreted either as a rivulet

of prescribed semiwidth a= ā, or as a rivulet of prescribed

flux Q= Q̄. In the case of prescribed semiwidth a= ā there is

a unique value of Q for all values of �. Figure 2 shows a

sketch of Q as a function of a and summarizes when the

different types of flow pattern occur. The shape of the rivulet

is independent of �. Increasing �decreasing� � from zero has

the effect of increasing �decreasing� u and hence increasing

�decreasing� Q. In the case of prescribed flux Q= Q̄ the pos-

sible semiwidths are the positive solutions for a of Q= Q̄.

When ��0 there is one solution for all positive values of Q̄,

but no solution when Q̄ is zero or negative. On the other

hand, when �
0 there is one solution for Q̄	0, two solu-

tions for Qmin
 Q̄
0 �the narrower one satisfying 0�a


amin and the wider one amin
a�a0�, one solution a

=amin when Q̄=Qmin, and no solution when Q̄
Qmin. Figure

3 shows a sketch of a as a function of � and summarizes

when the different types of flow pattern occur. The shape of

the rivulet depends on � via a. When ��0 the velocity is

always downwards and the effect of increasing the shear

stress from zero is always to increase the local velocity of the

fluid throughout the rivulet, i.e., �u /���0 everywhere.

Hence, since the flux must remain constant, the rivulet al-

ways becomes narrower �and shallower�, i.e., �a /��
=−7a / �8a+21��
0. When �
0 the velocity is always up-

wards near the edges of the rivulet, but may be downwards

elsewhere. Moreover, the effect of decreasing the shear stress

from zero can be either to increase or to decrease the local

velocity. However, the net effect of the changes to the size of

the rivulet and to the velocity along it are that when a


amin the rivulet always becomes narrower �and shallower�,
i.e., �a /���0, whereas when a�amin the rivulet always be-

comes wider �and deeper�, i.e., �a /��
0.

A full stability analysis is beyond the scope of the

present work, but in the case of prescribed flux Q= Q̄ we can

generalize the quasisteady stability analysis of a purely

FIG. 1. Sketches of the flow in the cases �a� ��0 �type I�, �b� �
0 and

a�−4� �type II�, �c� �
0 and a=−4� �type III�, �d� �
0 and −2�
a


−4� �type IV�, and �e� �
0 and a�−2� �type V�. In each part regions of

downwards flow �i.e., u�0� are shaded in gray while regions of upwards

flow �i.e., u
0� are unshaded. In �b�, �c�, and �d� b=a�1+2� /a�1/2 and in

�b� c=a�1+4� /a�1/2. The locations of the maximum and/or minimum veloc-

ity are marked with dots ��� and/or open circles ���, respectively.

FIG. 2. Sketch of Q as a function of a summarizing when the different types

of flow pattern occur for ��0, �=0, and �
0.

FIG. 3. Sketch of a as a function of � summarizing when the different types

of flow pattern occur for Q̄�0, Q̄=0, and Q̄
0. Here �1=−�−35Q̄ /16�1/4,

�max=−�−5120Q̄ /3087�1/4, and �2=−�105Q̄ /128�1/4.
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gravity-driven rivulet undertaken by Wilson and Duffy.
6

Fol-

lowing the earlier work we assume that the flow remains

symmetric and unidirectional and that the quasisteady mo-

tion is driven entirely by that of the moving contact line y

=A, where A=A�t�. Furthermore, we assume that the speed

of the moving contact line, A�, and the dynamic contact

angle, =�t�, are related by a general “Tanner law” in the

form A�=F��, where the function F�� satisfies F�1�=0 and

is monotonically increasing near =1. Perturbing about the

constant steady-state values of the semiwidth and the contact

angle A=a and =1 by writing A=a+a1�t� and =1+1�t�
yields

a1� =
M��a1�m

m!
, �2�

where M = �dmF /dm�=1�0�m=1,3 ,5 , . . . � is the first non-

zero derivative of F�� evaluated at =1 and

� = − �QA

Q

�
A=a,=1

= −
8a + 21�

2a�3a + 7��
. �3�

Equation �2� can be immediately solved for a1 and this so-

lution shows that, whatever the specific form of F��, the

rivulet is unstable to small perturbations when ��0 and

stable when �
0. Hence when �	0 and when �
0 and

Q̄	0 the rivulet is always stable, while when �
0 and

Qmin� Q̄
0 the wider rivulet is always stable and the nar-

rower rivulet is stable when 0
a
−7� /3 but unstable when

−7� /3
a
amin=−21� /8.

We can also address the question posed by Schmuki and

Laso
7

and Myers et al.
4

of whether or not it is ever energeti-

cally favorable for a rivulet to split into two or more subrivu-

lets. The total energy of the rivulet is the sum of its kinetic

energy and surface energy. Momentarily reverting to

dimensional variables, the kinetic energy �per unit length� is

given by

�

2
�

−a

+a �
0

h

u2dzdy �4�

and the surface energy, or, more precisely, the difference be-

tween the surface energy of the rivulet and the surface en-

ergy of the dry substrate �per unit length� is given by

���
−a

+a

�1 + h�
2�1/2dy − 2a cos �	 . �5�

Thus, if we nondimensionalize energy �per unit length� with

�U2�l2=�3g2�5l6 /�2 then the leading-order energy of the

rivulet, E, is given by

E = �
−a

+a
h5

15
+

5�h4

24
+

�2h3

6
dy +

1

W
�1

2
�

−a

+a

h�
2dy + a	 ,

�6�

which can be evaluated explicitly to yield

E =
16a6

103 95
+

2�a5

189
+

2�2a4

105
+

4a

3W
, �7�

where W=�lU2 /��=�2�3 /gl�2 is an appropriately defined

Weber number.
8

It can readily be demonstrated that �for a

fixed value of �� E is a monotonically increasing function of

a. Thus wider rivulets always have more energy than nar-

rower ones, and hence it is never energetically favorable for

a rivulet to split into one or more wider rivulets. However, it

can be energetically favorable for a rivulet to split into one or

more narrower rivulets. Specifically, it is energetically favor-

able for a rivulet with semiwidth a and flux Q to split into

two rivulets, one with flux �Q and the other with flux �1
−��Q, where 0
��1/2, if the difference between the en-

ergies of the two states, �E, is positive.

In the special case of a purely gravity-driven rivulet �i.e.,

the case �=0� the semiwidth is given by a= �105Q /4�1/4, and

when a
ac then �E
0 for all 0
��1/2, but when a

=ac then �E=0 at �=1/2, and when a�ac then �E�0 at

�=1/2. Thus for a�ac �or equivalently for Q�Qc� it is

energetically favorable for the rivulet to split into two equal

narrower rivulets, where the critical values of the semiwidth,

ac, and the flux, Qc, are given by

ac = �3465�23/4 − 1�

4�1 − 2−1/2�W
	1/5



4.5805

W1/5
, �8�

Qc =
4

105
�3465�23/4 − 1�

4�1 − 2−1/2�W
	4/5



16.7703

W4/5
.

This result agrees qualitatively with Myers et al.,
4

who cal-

culated ac and Qc numerically for a range of values of �.

In the limit of large positive shear stress �→� when

Q�0, and for the narrower rivulet in the limit of large nega-

tive shear stress �→−� when Q
0, the leading order semi-

width is given by a= �15Q /2��1/3, and the behavior of �E is

qualitatively the same as that in the case �=0 described

above, where ac and Qc are now given by

ac = � 70�22/3 − 1�

�1 − 2−1/3��2W
	1/3



5.8413

�2/3W1/3
, �9�

Qc =
28�22/3 − 1�

3�1 − 2−1/3��W



26.5750

�W
.

In particular, this result shows that the conjecture proposed

by Myers et al.
4

that it is never energetically favorable for a

purely shear-stress-driven rivulet to split is not correct.

When both gravity and shear-stress effects are significant

analytical progress is harder. However, we can still make

progress numerically. Before doing this it is convenient to

remove W from the problem by scaling a with W−1/5, � with

W−1/5, Q with W−4/5, and E with W−6/5. When Q�0 the be-

havior is qualitatively the same as that in the case �=0.

When Qmin�Q
0 �which is possible only when �
0� the

situation is somewhat more complicated. In this case there

are always two possible rivulets with the same flux �the nar-

rower one satisfying 0
a�amin and the wider one amin


a
a0�. As we have already seen, it is always energetically

favorable for the wider rivulet to “split” into the narrower
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rivulet with the same flux. On the other hand, the behavior of

the narrower rivulet is somewhat similar to that of the rivu-

lets in the case Q�0 described previously. Specifically, for

�c��
0, where �c
−2.5038W−1/5, it is never energetically

favorable for the smaller rivulet to split, but for �
�c there

is a critical value of the semiwidth ac �0
ac�amin� above

which and a critical value of the flux Qc �Qmin�Qc
0�
below which it is energetically favorable for the rivulet to

split into two narrower rivulets, and the critical situation

is again that of splitting into two equal rivulets each

with half the flux of the original, i.e., the case �=1/2.

Note that ac=amin��c�
6.5725 W−1/5 and Qc=Qmin��c�

−23.6954 W−4/5. Figures 4 and 5 show W1/5a and W4/5Q,

respectively, plotted as functions of W1/5� and indicate when

it is energetically favorable or unfavorable for a rivulet to

split.

Note that, although perhaps slightly obscured by the

choice of nondimensionalization, the results described in the

present work include the very simple special case of a purely

shear-stress-driven rivulet. Specifically, if we revert to di-

mensional variables and set g=0 then we have u=�z /� and

Q=2��2a3 /15�. In this case there is always single rivulet

for each value of ā ��0� or Q̄ �provided that it has the same

sign as ��, and the flow is always in the same direction as the

prescribed shear stress throughout the rivulet �i.e., the flow

pattern is always of type I when ��0 and always of type V

when �
0�.
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FIG. 4. Plot of W1/5a as a function of W1/5� indicating when it is energeti-

cally favorable �denoted by “F”� or unfavorable �denoted by “UF”� for a

rivulet to split. The curves a=amin=−21� /8 and a=a0=−7� /2 are indicated

with dashed lines.

FIG. 5. Plot of W4/5Q as a function of W1/5� indicating when it is energeti-

cally favorable �denoted by “F”� or unfavorable �denoted by “UF”� for a

rivulet to split. The curve Q=Qmin=−3087�4 /5120 in ��0 is indicated with

a dashed line. Note that when �
0 and Qmin
Q
0 the region in which it

is unfavorable to split applies only to the narrower rivulet.
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