
Local RBF Approximation for Scattered Data Fitting

with Bivariate Splines

Oleg Davydov, Alessandra Sestini and Rossana Morandi

Abstract

In this paper we continue our earlier research [4] aimed at developing efficient meth-
ods of local approximation suitable for the first stage of a spline based two-stage
scattered data fitting algorithm. As an improvement to the pure polynomial local
approximation method used in [5], a hybrid polynomial/radial basis scheme was
considered in [4], where the local knot locations for the RBF terms were selected
using a greedy knot insertion algorithm. In this paper standard radial local ap-
proximations based on interpolation or least squares are considered and a faster
procedure is used for knot selection, significantly reducing the computational cost
of the method. Error analysis of the method and numerical results illustrating its
performance are given.

1 Introduction

Let X ⊂ Ω, be a set of scattered distinct sites and {(x, fx) : x ∈ X, fx ∈ R} the set of
data points to be approximated, Ω ⊂ R

d. The idea of the two-stage method [16] is to
compute in the first stage a large number of local approximations to the data and use
them in the second stage as a source of information (e.g., function values and gradients
at vertices of a triangulation) for building a global spline approximation of the full data
set using a localized quasi-interpolation type operator. This helps to avoid solving
large linear systems and large scale optimization problems arising if the interpolating,
smoothing or minimal energy spline is directly computed from the data. For a long time
it has been believed that two-stage methods cannot produce approximations of the same
quality as the above mentioned global methods.

Recently, a promising two-stage bivariate spline algorithm has been developed and
tested in [5, 9]. Convincing numerical evidence has been provided that the new method is
efficient, robust and avoids the drawbacks usually associated with the two-stage methods.
One of the goals of [4] and this paper is to improve the performance of this method at
the first stage by achieving the approximation quality of the radial basis function (RBF)
methods [2], in the same time also avoiding their well known computational difficulties,
by applying them only to small subsets of the data.

In the original approach (see [5]) the local polynomial approximations are computed
as discrete least squares, with the polynomial degree automatically adjusted to local data
by taking into account the estimates of the approximation power of local least squares
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[3]. In [4] and here we consider local approximation schemes defining non-polynomial
approximations which are later converted into polynomials and then extended to a spline
by the same method as in [5]. In [4] we have provided numerical evidence that better
accuracy of the approximation may be achieved if local polynomials are augmented by
linear combinations of radial basis functions, so defining hybrid approximations which
are still computed by discrete least squares. The knot set used for each local hybrid
approximation is chosen using an adaptive greedy algorithm based on successive knot
insertion and estimates from [3].

In this paper we consider the standard radial approximations in the local stage that
are computed by interpolation or by the least-squares method, with the local knots
selected using a thinning algorithm similar to that suggested in [7] in the context of
multiresolution. (Note that our motivation for thinning is entirely based on the compu-
tational considerations since the condition numbers of the matrices arising in the RBF
method depend on the so called separation distance of the knots.)

The paper is organized as follows. In Section 2 we introduce the local approximation
scheme. In Section 3 we provide an error analysis of this version of the two-stage method
based on available estimates for the RBF interpolants. Sections 4 and 5 are devoted
to extensive numerical tests with two goals: to verify the approximation order of the
method, and to compare the performance of this new method with the method of [4] for
some real world data sets.

2 Local RBF Approximation

At the first stage of a two-stage method, the local approximations are needed for each
cell T of a partition of Ω associated with the spline method used. (Such a cell is
usually a d-dimensional simplex or cube.) The task of the first stage is to find a good
approximation of the underlying function on T . To this end, the data from some domain
ω, where T ⊂ ω ⊂ Ω, are used. As in [4, 5, 9], we select the domain ω initially as a
ball with center at the barycenter of T and of radius equal to the diameter of T . If
the number of data points located in this ball is smaller than a user specified number
Mmin, then the radius of the ball ω is enlarged until this number is achieved. Another
user specified parameter, Mmax, controls the maximal number of points to be used, and
a uniform type thinning is employed, if needed. Thus, this data selection procedure
delivers a set of data sites Xω = {x1, . . . ,xNω} ⊂ X ∩ ω. where

Nω ≤ Mmax. (1)

The local RBF approximation has the following form

ℓω(·) =

m
∑

j=1

aj pj(·) +

nω
∑

j=1

bj φω(‖ · −yj‖2), (2)

where the set of knots Yω = {yj : j = 1, . . . , nω} is a subset of Xω, {p1, . . . , pm},
m =

(

d+q
d

)

, is a suitable basis for the space Πd
q of d-variate polynomials of total degree
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q ≥ 0, and φω : R≥0 → R is a radial basis function, i.e., a positive definite function or a
conditionally positive definite function of order s ≤ q + 1 on R

d [2], adjusted to the size
of ω by scaling. Thus, we take

φω(r) = φ
( r

δdω

)

, r ≥ 0, (3)

where φ is a fixed radial basis function, dω is the diameter of ω, and δ is a user specified
parameter.

In this paper we consider only positive definite radial basis functions or conditionally
positive definite radial basis functions of order 1. Therefore, it is sufficient to take

q = 0.

The function ℓω of the form (2) is selected by using interpolation on the coarse set
Yω, i.e. requiring

ℓω(yj) = fyj
, j = 1, . . . , nω, (4)

with additional orthogonality condition

nω
∑

j=1

bj = 0. (5)

The existence and uniqueness of such a function is guaranteed for any Yω (see e.g. [2]).
In particular, the matrix of the corresponding linear system,

[

eT AYω

0 e

]

,

where e := (1, . . . , 1),

AYω :=







φω(‖y1 − y1‖2) . . . φω(‖y1 − ynω‖2)
...

...
φω(‖ynω − y1‖2) . . . φω(‖ynω − ynω‖2)






,

is nonsingular as soon as all knots y1, . . . ,ynω are distinct.
Since the linear system arising in this interpolation problem is of the size nω + 1 ≤

Mmax + 1, its solution can be easily computed if Mmax is not large, and if the matrix
AYω is well conditioned.

To complete the description of the method we now explain how we choose Yω. It is
known that the condition number of AYω can be bounded in terms of the reciprocal of
the separation distance

s(Yω) =
1

2
min

1≤i<j≤nω

‖yi − yj‖2.

Therefore, we choose Yω such that

dω/s(Yω) ≤ S, (6)
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where S is again a user specified number. To guarantee (6), the thinning algorithm from
[7] is adapted.

As an alternative to interpolation, the discrete least squares approach [10, 12] can
also be considered, i.e. ℓω of the form (2) can be selected via the minimization of the
least-squares error (the ℓ2-norm of the residual on Xω),

(

Nω
∑

i=1

(fi − ℓω(xi))
2
)1/2

, (7)

using the orthogonality condition (5) as a linear equality constraint. The existence and
uniqueness of the least squares approximation follows from the theory of constrained
least squares, see [1].

Regardless whether we use interpolation or least squares, and besides the choice of
the radial basis function φ, the scheme depends on the following parameters that are
supposed to be specified by the user globally, i.e., the same values are used for all local
approximations:

Mmin,Mmax, δ, S. (8)

In real world applications these parameters have to be adjusted to a particular type
of data by some calibration procedure. The local error estimates discussed in the next
section can also be useful for this.

3 Error Bounds

To facilitate a correct comparison to the approximation results for global methods, we
mention that the approximation order of a two-stage method is the minimum of the
order of the spline operator and that of the local scheme [16]. More precisely, let us
assume for simplicity that the subdomains where local approximations are needed are
the cells T of a uniform partition △ of Ω associated with the spline space, which is the
case for the splines used in [5]. Then the approximation error of the two-stage scheme
in the uniform norm for a sufficiently smooth function can be estimated by

C1 hp+1 + C2 max{eT : T ∈ △}, (9)

where h is the diameter of the cells, p+1 is the approximation order of the spline quasi-
interpolation operator, eT is the error of local approximation, and C1, C2 are some
positive constants.

To assess the approximation error of the first stage of the two-stage method we
invoke some results from the approximation theory of radial basis functions on bounded
domains.

Let ℓω(f) be the sum (2) determined by the conditions (4) and (5) with fyj
= f(yj),

j = 1, . . . , nω, for a function f : R
d → R. We assume that f is smooth enough to belong

to the native space Fφω
associated with the radial basis function φω,

Fφω
= {f ∈ L2(R

d) : |f |φω
< ∞},
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where

|f |φω
:=

(

∫

Rd

|f̂(x)|2

Φ̂ω(x)
dx

)1/2
, Φω(·) := φω(‖ · ‖2),

and f̂ denotes the generalized Fourier transform.
Well known error bounds for the interpolation with radial basis functions (see, e.g.

[2, 11, 13, 17]) lead in the case q = 0 to the estimate

|f(x) − ℓω(f,x)| ≤ 2
√

E0(Φω)C(Bh(x,Yω )) |f |φω
, x ∈ R

d, (10)

where h(x,Yω) is the distance between x and Yω,

h(x,Yω) := inf
y∈Yω

‖x − y‖2,

E0(Φω)C(Bh(x,Yω )) is the error of the best constant approximation of Φω,

E0(Φω)C(Bh(x,Yω)) = inf
p∈Πd

0

‖f − p‖C(Bh(x,Yω)),

and Br denotes the ball in R
d with center 0 and radius r.

Assuming that φ is monotone (which is true for all available radial basis functions
at least in a neighborhood of zero) and considering the fill distance of Yω with respect
to T ,

h(T,Yω) = sup
x∈T

h(x,Yω),

we have for all x ∈ T ,

E0(Φω)C(Bh(x,Yω )) ≤ E0(Φω)C(Bh(T,Yω)) =
1

2
|φω(h(T,Yω)) − φω(0)|,

which leads to the estimate

‖f − ℓω(f)‖C(T ) ≤
√

2|φω(h(T,Yω)) − φω(0)| · |f |φω
. (11)

Obviously, h(T,Yω) ≤ dω, and taking into account (3) we have

|φω(h(T,Yω)) − φω(0)| =
∣

∣

∣
φ
(h(T,Yω)

δdω

)

− φ(0)
∣

∣

∣
≤ |φ(1/δ) − φ(0)|, (12)

which shows that increasing the value of the parameter δ may have a positive effect
on the error. It should, however, be taken into account that the seminorm |f |φω

also
depends on δ, in view of (3).

Among the most commonly used radial basis functions are the thin plate splines

φTP,β(r) =

{

(−1)⌈β/2⌉rβ, β ∈ R>0 \ 2N,
(−1)β/2+1rβ log r, β ∈ 2N,

(13)

that are conditionally positive definite of order ⌈β/2⌉ if β ∈ R>0 \ 2N, and β/2 + 1 if
β ∈ 2N. (Here ⌈x⌉ denotes the smallest integer greater or equal to x ∈ R.) Therefore
they can be used in our scheme (where the polynomial degree is q = 0) if 0 < β < 2.
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The approximation order of the thin plate splines is understood better than that of
the other available RBFs because their Fourier transform is homogeneous, Φ̂TP,β(x) =

K‖x‖−β−d
2 , with some constant K independent of x. Therefore,

|f |2
φTP,β

ω
= (δdω)β |f |2φTP,β ,

and we obtain from (11) and (12),

‖f − ℓω(f)‖C(T ) ≤
√

2h(T,Yω)β |f |φ, 0 < β < 2. (14)

By our algorithm (see Section 2), we always have dω ≥ 2h, where h is the diameter
of the cell T , which is the same for all cells in our setting. On the other hand, we may
assume that there is enough data so that dω ≤ ch, for a constant c. Taking into account
(6) and the obvious inequality s(Yω) ≤ h(T,Yω), we have

2h/S ≤ dω/S ≤ h(T,Yω) ≤ dω ≤ ch.

Therefore, (9) and (14) suggest that the approximation order of the two-stage method
with thin plate splines in the local stage should be O(hmin{β/2,p+1}) or, assuming that p is
high enough, O(hβ/2). Note that since the cell T where we use the local approximations
covers only the central part of ω, the deterioration of the error near the boundary of ω
only affects the quality of the local approximations at the boundary of the entire domain
Ω.

Finally, we mention that the above estimates can be improved if f satisfies some
more stringent requirements than f ∈ Fφω

, see [2, 14, 15]. The improvement amounts
basically (up to a constant factor) to removing the square root sign in (10), (11) and
(14), and replacing the seminorm |f |φω

with a stronger seminorm |f |, whose boundedness
requires “higher smoothness” of f .

In particular, for the thin plate splines the approximation order becomes O(hβ).
Moreover, in this case the order O(hβ+d/2) for scattered data and O(hβ+d) for grid data
has been proved (see [2]).

4 Numerical Results: Approximation Order

In our numerical experiments we restrict ourselves to the two dimensional case d = 2.
This section is devoted to numerical tests with randomly generated data for the well
known Franke test function [8]. The goals of the tests are to measure the approximation
order of the two-stage method, compare it with the theoretical error bounds, and get
hints for the selection of good values of the parameters (8) for the local approximation.

More precisely, 40 different random data sets Xi, i = 1, . . . , 40, of cardinality
#Xi = N were generated in the reference square [0, 1]2, for N = 102, 103, 104, 105.
For the second stage of the two-stage method we have chosen the method SQav

2 of [5]
which produces C2 piecewise sextic splines on the four directional mesh. Based on our
experiments with the Franke test function in [4], we take the grid size for the spline
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space to be n × n, where n is the closest integer to
√

N/2. The experiments have been
performed using the implementation of the spline operators in [6].

To measure the approximation error, we compute the maximum error ǫi of the spline
relative to the exact function values on a dense (10n + 1) × (10n + 1) grid in a suitably
reduced window ([0.2, 0.8]2) for every data set Xi and take the geometric average max =
exp( 1

40

∑40
i=1 ln ǫi) of these errors. We think that the geometric average is the most

appropriate way of averaging for the approximation order tests. The motivation for
using the reduced window is our desire to avoid boundary effects.

In the local stage we use the interpolation method described in Section 2 above and
choose 1) the thin plate spline φ(r) = −rβ, β = 3/2 or β = 7/4, and 2) the multiquadrics

φ(r) = −
√

1 + r2 for the experiments. We have chosen a high value Mmax = 400 to
eliminate the influence of this parameter and tried to find nearly optimal values for
Mmin, S and δ. The results are presented in Tables 1 and 2.

N spline grid max (β = 3/2) max (β = 7/4)

102 5 × 5 8.55 · 10−2 6.92 · 10−2

103 16 × 16 5.22 · 10−3 3.37 · 10−3

104 50 × 50 2.60 · 10−4 1.17 · 10−4

105 158 × 158 2.37 · 10−5 7.09 · 10−6

Table 1: Maximum error using the local RBF interpolation scheme based on φ(r) = −rβ,
β = 3/2 and 7/4. Parameter values: Mmin = 100, S = 100, δ = 1.

For the thin plate spline (Table 1), the experiments confirm that the parameter δ does
not influence the error significantly. Therefore, we have chosen a nominal value δ = 1.
Note that the average number of RBF knots in the local approximations approaches 140
for the larger data sets, which makes these tests particularly slow. Although an increase
of Mmin was always profitable for φ(r) = −rβ, fewer knots were sufficient to achieve
nearly optimal errors for N < 105. In this sense nearly optimal values of the parameter
Mmin are: Mmin = 20 for N = 102 (28 knots), Mmin = 30 for N = 103 (45 knots), and
Mmin = 60 for N = 104 (65 knots). (We have taken S = Mmin in these tests.)

Table 1 suggests the approximation order about hβ+1, which conforms nicely to the
available theoretical results, see the comments at the end of Section 3. Note that the
approximation error of the spline operator SQav

2 is O(h7) [5] and hence it is negligible
for this test.

It is clear from Table 2 that in the case of multiquadrics the correct choice of the
parameter δ (which clearly is related to the reciprocal of the classical multiquadric coef-
ficient c in

√
c2 + r2) is important. However, we had to choose the separation parameter

S such that δS ≤ 16 since otherwise the computation with multiquadrics turned out
numerically instable. (Note that for the real world data, like those tested below in
Section 5, δS must be even smaller.) The values of Mmin lower than 100 were disadvan-
tageous in our experiments for all N except N = 102. In the case N = 102, however,
Mmin = 100 delivers relatively high errors: 1.94 · 10−2 for δ = 0.2, S = 80, 3.75 · 10−2

for δ = 0.4, S = 40, 6.59 · 10−2 for δ = 0.8, S = 20, 1.08 · 10−1 for δ = 1.2, S = 40/3,
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N δ = 0.4 δ = 0.8 δ = 1.2 δ = 1.6
S = 40 S = 20 S = 40/3 S = 10

102 2.27 · 10−2 2.81 · 10−2 3.66 · 10−2 4.48 · 10−2

103 1.26 · 10−5 4.44 · 10−6 6.13 · 10−5 5.42 · 10−4

104 4.20 · 10−6 1.98 · 10−7 1.00 · 10−7 2.36 · 10−7

105 2.03 · 10−6 9.28 · 10−8 3.54 · 10−8 5.60 · 10−8

#knots (N = 105) 122.2 87.2 60.4 42.8

Table 2: Maximum error using the local RBF interpolation scheme based on φ(r) =
−
√

1 + r2 for different values of δ. The spline grid is the same as in Table 1. Other
parameters: Mmin = 20 if N = 102 and Mmin = 100 otherwise.

1.65 · 10−1 for δ = 1.6, S = 10. (Note that N = Mmin = 100 means, in fact, that all
local approximations are the same, and, hence, our spline does not differ much from
the corresponding global multiquadric approximation.) Therefore, we use Mmin = 20
if N = 102, and Mmin = 100 for other N . The value Mmin > 100 may be advanta-
geous for smaller δ. For example, for N = 103 and Mmin = 200 we have 3.36 · 10−6 if
δ = 0.4, S = 40, and 1.26 · 10−5 if δ = 0.8, S = 20.

The results in Table 2 confirm that greater values of δ tend to provide better errors.
Indeed, for higher N we have to increase δ in order to obtain the best errors, even though
numerical stability considerations force us to take smaller S, which in turn leads to the
reduction of the number of RBF knots (see the last row of the table). For any fixed
δ, however, Table 2 shows a substantial deterioration of the approximation order as N
increases. The estimates of Section 2 do not provide a full theoretical explanation for
this behavior. In particular, (11) includes the term |f |φω

, whose behavior for dω → 0 is
not clear to us in the case of multiquadrics.

5 Numerical Results: Real World Data

The second group of our experiments is aimed at verifying the performance of the pro-
posed scheme compared with the hybrid approach introduced in [4].

To this end we consider the same real-world data sets as in [4, 5], namely, the Glacier
data (GL, 8345 points), the Black Forest data (BF, 15885 points) and the Rotterdam
Port data (RP, 621624 points after cleaning, see [5]). Referring to [4, 5] for the descrip-
tion of these data sets, we only mention that GL is available from [8] and that RP has
been provided by Quality Positioning Services (Zeist, The Netherlands), and it has been
recorded using the QINSy software.

Note that in the first stage we use the least-squares method as described at the
end of Section 2 since it consistently produced better results than interpolation for
the real world data in our tests. To solve the constrained least squares problems we
employ the routine DGESDD from LAPACK. (Note that the interpolation method in
our implementation is also treated as special case of least squares.)

The results are reported in Table 3, where maximum (max), mean (mean) and
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root mean square (rms) errors at the data points, the average number of RBF knots
(#knots) used for the local approximations, and the computational time (time) are
shown. Results obtained with the method suggested in this paper (R) are compared
with the hybrid approach (H) of [4]. As in [4], we use multiquadric RBF in these tests.
The degree q of the polynomial term is 0 in all tests except RP/H, where q = 1. In
the second stage we use the spline methods RQav

2 (piecewise sextic) for GL and BF and
Qav

1 (piecewise cubic) for RP, as in the respective tests in [4, 5]. The computer used for
these experiments is a Pentium 4m / 1.9 GHz / 768 MB RAM.

GL/H GL/R BF/H BF/R RP/H RP/R

max 15.6m 17.8m 32.0m 30.0m 92.5 cm 90.2 cm

mean 1.57m 1.49m 1.39m 1.25m 5.46 cm 5.23 cm

rms 2.26m 2.19m 2.17m 2.00m 7.46 cm 7.22 cm

#knots 14.9 20.8 12.2 8.2 5.4 11.6

time 33.0 sec 3.7 sec 134 sec 7.11 sec 316 sec 97.3 sec

Table 3: Results for the data sets GL, BF and RP. Parameters (see [4] for the meaning
of κP and κH): 1) GL. Spline grid 20 × 24, Mmin = 60, Mmax = 160, δ = 0.4 for
both H and R methods, κH = 105 for H, and S = 8 for R. 2) BF. Spline grid 80 × 80,
Mmax = 100 for both H und R methods, Mmin = 12, δ = 0.3, κH = 104 for H, and
Mmin = 3, δ = 0.4, S = 7 for R. 3) RP. Spline grid 100 × 281, Mmin = 3, Mmax = 100,
δ = 0.4 for both H and R, κP = 100, κH = 2 · 104 for H, and S = 5 for R.

In addition to Table 3, we provide Figures 1–3 that present zooms into the same
subareas of the surfaces as ones used in [4]. They are produced with MATLAB using
dense grid evaluations of the spline surfaces (see [4]). The figures confirm the high visual
quality of our approximations, as they show no artifical oscillation or other unnatural
behaviour. Table 3 also shows that the errors for both H and R methods are comparable,
whereas the computational time for the method of this paper is substantially lower.
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