Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Evolution from A +2 Defect to +1/2 Defects in a Cylindrical Geometry

Miroshnychenko, Dmitri and Hill, N.A. and Mottram, N.J. and Lydon, J.E. (2005) Evolution from A +2 Defect to +1/2 Defects in a Cylindrical Geometry. Molecular Crystals and Liquid Crystals, 437. pp. 1495-1512.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this work the dynamics of liquid crystal ordering in a cylindrical geometry are considered. We study a system with liquid crystalline properties that exhibits translational symmetry along the cylinder axis and, therefore, the problem is effectively two-dimensional. The orientation of liquid crystals is described by a tensorial order parameter and the dynamics are governed by a balance between the dissipation and the rate of change of free energy, which includes the elastic, thermotropic and surface energy terms. The evolution of the + 2 defect differentiating first into two + 1 disclinations and subsequently into four + 1/2 defects is analysed. Different boundary conditions, namely strong and weak or no anchoring, have been considered and the critical value for the anchoring strength, at which + 1/2 defects are very close to escaping through the boundary but still remain there at equilibrium, has been identified.