Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A numerical investigation of heat transfer cardiac output measurements

Fotheringham, P. and Gourlay, A.R. and McKee, S. and Andrews, S. (2005) A numerical investigation of heat transfer cardiac output measurements. Journal of Theoretical Medicine, 6 (3). pp. 161-172. ISSN 1027-3662

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Measurement of cardiac output is often investigated using a technique based on hot-film anemometry. Here, we discuss a modification to hot-film anemometry, which involves a cylindrical heating element mounted flush on the surface of a typical Swan-Ganz catheter. In contrast to traditional thermodilution, the method discussed here has the potential to allow continuous monitoring of cardiac output. This paper demonstrates that there is a simple approximate relationship between the power input to the device to maintain a temperature of one degree above blood heat and cardiac output. Since, the heat transfer and the fluid flow decouple, a numerical model of the heat transfer of a cylindrical catheter (with heating element) sitting concentrically within a rigid cylindrical artery is developed. Numerical results were obtained for a wide selection of flow profiles, including experimental data. The results indicate that the cardiac output/power input relationship is extremely robust with respect to flow profile and system parameter variation.