Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


The stability of numerical approximations of the time domain current induced on thin wire and strip antennas

Davies, P.J. and Duncan, D.B. and Zubik-Kowal, B. (2005) The stability of numerical approximations of the time domain current induced on thin wire and strip antennas. Applied Numerical Mathematics, 55 (1). pp. 48-68.

Full text not available in this repository. Request a copy from the Strathclyde author


We derive and analyse collocation approximations of retarded potential integral equations (RPIEs) arising as models of scattering of waves from thin wire and strip antennas. In particular we derive midline collocated and transversely averaged strip RPIEs and show how they are related to the thin wire exact kernel RPIE. We Fourier analyse the temporal stability of spatially exact piecewise constant and linear in time approximations of these three RPIEs. All three are stable when piecewise constant in time approximation is used, but only the transversely averaged strip approximation is stable with piecewise linear time approximation. Numerical results are presented for practical schemes that are piecewise constant or linear in time and space, and these are in close agreement with the predictions of the Fourier analysis.